DOI QR코드

DOI QR Code

Development of transgenic strawberry plants expressing monellin, a sweet protein

감미단백질 모넬린 발현 딸기 형질전환 식물체 개발

  • Min, Sung Ran (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ko, Suk Min (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Lyu, Jae Il (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Ji Hyun (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yi, So Young (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, In-Ha (Nonsan Strawberry Experiment Station, Chungcheongnam-do Agricultural Research & Extension Services) ;
  • Kim, Hyun Sook (Nonsan Strawberry Experiment Station, Chungcheongnam-do Agricultural Research & Extension Services) ;
  • Kim, Tae Il (Nonsan Strawberry Experiment Station, Chungcheongnam-do Agricultural Research & Extension Services) ;
  • Choi, Pil Son (Department of Oriental Pharmaceutical Development, Nambu University) ;
  • Jeong, Won-Joong (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Suk Weon (Microbiological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Jonghyun (Division of Life Science, Korea Basic Science Institute) ;
  • Liu, Jang R. (Dept. of New Biology, Daegu Gyeongbuk Institute of Science & Technology)
  • 민성란 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 고석민 (제주대 아열대원예산업연구소) ;
  • 유재일 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 박지현 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 이소영 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 이인하 (충청남도농업기술원 논산딸기시험장) ;
  • 김현숙 (충청남도농업기술원 논산딸기시험장) ;
  • 김태일 (충청남도농업기술원 논산딸기시험장) ;
  • 최필선 (남부대 한방제약개발학과) ;
  • 정원중 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 김석원 (한국생명공학연구원 미생물자원센터) ;
  • 김종현 (한국기초과학지원연구원 생명과학연구부) ;
  • 유장렬 (대구경북과학기술원 뉴바이올로지 전공)
  • Received : 2015.04.23
  • Accepted : 2015.07.02
  • Published : 2015.09.30

Abstract

Leaf discs from 'Yeobong' and 'Maehyang' strawberry plants were used as explants for transformation. The Agrobacterium tumefaciens strain EHA105 harboring the monellin gene under the control of the CaMV 35S promoter was used in co-cultivation experiments. The frequencies of callus formation and plant regeneration from leaf explants after co-cultivation in 'Yeobong' were higher than those of 'Maehyang'. These transgenic plants showed normal growth patterns and flowering. PCR and Southern hybridization confirmed that 1 to 2 copies of the monellin gene were integrated into genome of the transgenic strawberry plants. Northern blot analysis confirm that the transcripts were expressed in transgenic strawberry plants. Although long-term subcultured transgenic strawberry plants showed a phenomenon to escape the transgene, the transformation system established in this study provides new opportunities for genetic improvement of strawberry plants.

'여봉'과 '매향' 딸기 식물체로부터 잎 절편을 형질전환 재료로 이용하였다. CaMV 35S promoter에 모넬린 유전자가 연결된 pGA482-pS1D 벡터가 들어있는 아그로박테리움 EHA105 균주를 매개로 형질전환을 수행하였다. 공동 배양 후 잎 절편체로부터 캘러스 형성과 식물체 재분화율은 '여봉' 품종이 '매향' 품종보다 높았으며 이들 형질전환 식물체는 정상적으로 생육하여 개화하였다. PCR 및 Southern blot 분석을 통해 1-2 카피의 모넬린 유전자가 형질전환 딸기 식물체에 도입되었음을 확인하였으며, Northern blot 분석을 통하여 두 품종에서 모두 모넬린 유전자가 발현됨을 확인하였다. 비록 장기간 계대배양된 이들 딸기 형질전환 식물체에서는 모넬린 유전자가 escape 되는 경향을 보였지만, 본 연구에서 확립된 형질전환 시스템은 딸기의 유전적 개량을 위한 새로운 기회를 제공할 수 있을 것이다.

Keywords

References

  1. Agricultural Outlook Center (2013) Fruit Vegetables - Strawberry. Korea Rural Economic Institute (KREI), Korea
  2. An G (1986) Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol 81:86-91 https://doi.org/10.1104/pp.81.1.86
  3. Barcelo M, El-Mansouri I, Mercado JA, Quesada MA, Pliego F (1998) Regeneration and transformation via Agrobacterium tumefaciens of the strawberry cultivar Chandler. Plant Cell Tiss Org Cult 54:29-36 https://doi.org/10.1023/A:1006031527413
  4. Cho MA , Choi KM, Ko SM, Min SR, Chung H-J, Liu JR, Choi PS (2005) High frequency plant regeneration from leaf explant cultures of domestic cultivated strawberry (Fragaria $\times$ ananassa Duch). J Plant Biotechnol 32:175-179 https://doi.org/10.5010/JPB.2005.32.3.175
  5. Du Plessis HJ, Brand RJ, Glyn-Woods C, Goedhart MA (1997) Efficient genetic transformation of strawberry (Fragaria ananassa Duch.) cultivar Selekta. Acta Hortic 447:289-294
  6. Edens L, van der Wel H (1985) Microbial synthesis of the sweet tasting plant protein thaumatin. Trends Biotechnol 3:61-64 https://doi.org/10.1016/0167-7799(85)90078-2
  7. El Mansouri I, Mercado JA, Valpuesta V, Lopez-Aranda JM, Pliego-Alfaro F, Quesada MA (1996) Shoot regeneration and Agrobacterium-mediated transformation of Fragaria vesca L. Plant Cell Rep 15:642-646 https://doi.org/10.1007/BF00232469
  8. Faedi W, Mourgues F, Rosati C (2002) Strawberry breeding and varieties: situation and perspectives. Acta Hortic 567:51-59
  9. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50:15-158
  10. Graham J, McNcol RJ, Grieg K (1995) Towards genetic based insect resistance in strawberry using the cowpea trypsin inhibitor gene. Ann Appl Biol 127:163-173. https://doi.org/10.1111/j.1744-7348.1995.tb06661.x
  11. James DJ, Passey AJ, Barbara DJ (1990) Agrobacterium mediated transformation of the cultivated strawberry (Fragaria $\times$ ananassa Duch) using disarmed binary vectors. Plant Sci 69:79-94 https://doi.org/10.1016/0168-9452(90)90106-X
  12. Jimenez-Bermudez S, Redondo-Nevado J, Munoz-Blanco J, Caallero JL, Lopez-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA, Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol 128:751-759 https://doi.org/10.1104/pp.010671
  13. Houde M, Dallaire S, N'Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381-387 https://doi.org/10.1111/j.1467-7652.2004.00082.x
  14. Khammuang S, Dheeranupattana, Hanmuangjai P, Won-groung S (2005) Agrobacterium-mediated transformation of modified antifreeze protein gene in strawberry. Songklanakarin J Sci Technol 27:693-703
  15. Kim SH, Kang CH, Kim R, Cho JM, Lee YB, Lee TK (1989) Redesigning a sweet protein: Increased stability and renaturability. Protein Eng 2:571-575 https://doi.org/10.1093/protein/2.8.571
  16. Marta AE, Camadro EL, Diaz-Ricci JC, Castagnaro AP (2004) Breeding barriers between the cultivated strawberry, Fragaria $\times$ ananassa, and related wild germplasm. Euphytica 136:139-150 https://doi.org/10.1023/B:EUPH.0000030665.95757.76
  17. Morgan A, Baker CM, Chu JSF, Lee K, Crandall BA, Jose L (2002) Production of herbicide tolerant strawberry through genetic engineering. Acta Hortic 567:113-115
  18. Morris JA, Cagan RH (1972) Purification of monellin, the sweet principal of Dioscoreophyllum cumminsii. Biochim Biophys Acta 261:114-122 https://doi.org/10.1016/0304-4165(72)90320-0
  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  20. Nehra NS, Chibbar RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C (1990a) Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Rep 9:293-298
  21. Nehra NS, Chibbar RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C (1990b) Agrobacterium-mediated transformation of strawberry calli and recovery of transgenic plants. Plant Cell Rep 9: 10-13
  22. Nehra NS, Stushnoff C (1989) Direct shoot regeneration from strawberry leaf disks. J Amer Soc Hort Sci 114:1014-1018
  23. Ota M, Sawa A, Nio N, Ariyoshi Y (1999) Enzymatic ligation for synthesis of single chain analogue of monellin by transglutaminase. Biopolymers 50:193-200 https://doi.org/10.1002/(SICI)1097-0282(199908)50:2<193::AID-BIP8>3.0.CO;2-P
  24. Park J-I, Lee Y-K, Chung W-I, Lee I-H, Choi J-H, Lee W-M, Ezura H, Lee S-P, Kim I-J (2006) Modification of sugar composition in strawberry fruit by antisense suppression of an ADPglucose pyrophosphorylase. Mol Breeding 17:269-279 https://doi.org/10.1007/s11032-005-5682-9
  25. Penarrubia L, Kim R, Giovannoni J, Kim S-H, Fisher RL (1992) Production of the sweet protein monellin in transgenic plants. Biotechnology 10:561-564 https://doi.org/10.1038/nbt0592-561
  26. Qin YH, Zhang SL (2007) Factors influencing the efficiency of Agrobacterium-mediated transformation in strawberry cultivar Toyonoka. J Nucl Agric Sci 21:461-465
  27. Roh KH, Shin KS, Lee YH, Seo SC, Park HG, Daniell H, Lee SB (2006) Accumulation of sweet protein monellin is regulated by the psbA 5'UTR in tobacco chroloplasts. J Plant Biol 49:34-43 https://doi.org/10.1007/BF03030786
  28. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503-517 https://doi.org/10.1016/S0022-2836(75)80083-0
  29. Sugaya T, Yano M, Sun H-J, Hirai T, Ezura H (2008) Transgenic strawberry expressing the taste-modifying protein miraculin. Plant Biotechnol 25:329-333 https://doi.org/10.5511/plantbiotechnology.25.329
  30. Vellicce GR, Ricci JCD, Hernandez L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res 15:57-68 https://doi.org/10.1007/s11248-005-2543-6
  31. Wang JL, Ge HB, Peng SQ, Zhang HM, Chen PL, Xu JR (2004) Transformation of strawberry (Fragaria ananassa Duch.) with late embryogenesis abundant protein gene. J Hortic Sci Biotechnol 79:735-738 https://doi.org/10.1080/14620316.2004.11511835