DOI QR코드

DOI QR Code

섬(Island) 구조로 이루어진 강성도 국부변환 신축성 기판의 변형 거동

Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure

  • 오현아 (홍익대학교 공과대학 신소재공학과) ;
  • 박동현 (홍익대학교 공과대학 신소재공학과) ;
  • 신수진 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Oh, Hyun-Ah (Department of Materials Science and Engineering, Hongik University) ;
  • Park, Donghyeun (Department of Materials Science and Engineering, Hongik University) ;
  • Shin, Soo Jin (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 투고 : 2015.12.04
  • 심사 : 2015.12.28
  • 발행 : 2015.12.30

초록

신축성 디바이스용 강성도 국부변환 기판기술을 개발하기 위해 강성도가 서로 다른 두 polydimethylsiloxane 탄성고분자를 사용하여 섬(island) 구조로 이루어진 강성도 국부변환 신축성 기판을 형성하고 변형 거동을 분석하였다. 기판 기지로는 탄성계수가 0.09 MPa인 Dragon Skin 10을 사용하였으며, 섬 구조의 강성도 국부변환부는 탄성계수가 2.15 MPa인 Sylgard 184를 사용하였다. 신축성 기판의 형상은 길이 6.5 cm, 두께 0.4 cm, 폭 2.5 cm 이었다. Dragon Skin 10 기지에 폭 1 cm, 길이 1~6 cm인 Sylgard 184의 삽입에 의해 신축성 기판의 탄성계수가 0.09 MPa에서 0.13~0.33 MPa로 증가하였다. 길이 4 cm, 폭 0.5~1.5 cm인 Sylgard 184 강성도 국부변환부를 내재시킴에 따라 신축성 기판의 탄성계수가 0.16~0.2 MPa로 증가하였으며, 길이 2 cm, 폭 0.5~1.5 cm인 강성도 국부변환부를 내재시킴에 따라 탄성계수가 0.142~0.154 MPa로 증가하였다. 신축성 기판의 변형률이 증가함에 따라 Sylgard 184와 Dragon Skin 10의 강도 차이가 현저히 증가하는데 기인하여 강성도 국부변환부의 변형억제 효과가 향상되었다.

In order to develop stretchable substrate technology for stretchable devices, locally stiffness-variant stretchable substrates were processed with two polydimethylsiloxane elastomers of different stiffnesses and their deformation behavior was characterized. Low-stiffness substrate matrix and embedded high-stiffness island of the stretchable substrate were formed by using Dragon Skin 10 of the elastic modulus of 0.09 MPa and Sylgard 184 of the elastic modulus of 2.15 MPa, respectively. A stretchable substrate was fabricated to a configuration of 6.5 cm length, 0.4 cm thickness, and 2.5 cm width. The elastic modulus of a stretchable substrate was increased from 0.09 MPa to 0.13~0.33 MPa by embedding a Sylgard 184 island of 1 cm width and 1~6 cm length into the center part of the Dragon Skin 10 substrate matrix. The elastic modulus of a stretchable substrate was improved to 0.16~0.2 MPa by embedding a Sylgard 184 island of 4 cm length and 0.5~1.5 cm width and to 0.1421~0.154 MPa by embedding a Sylgard 184 island of 2 cm length and 0.5~1.5 cm width. With increasing the tensile strain of a stretchable substrate, deformation restriction of the locally stiffness-variant Sylgard 184 island was further enhanced due to substantial increase in the strength difference between Sylgard 184 and Dragon 10 at large strain.

키워드

참고문헌

  1. J. Y. Choi, D. W. Park and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014). https://doi.org/10.6117/kmeps.2014.21.4.125
  2. H. A. Oh, D. Park, K. S. Hahn and T. S. Oh, "Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", to be published in J. Microelectron. Packag. Soc. (2015).
  3. J. Y. Choi and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging", J. Microelectron. Packag. Soc., 20(4), 17 (2013). https://doi.org/10.6117/KMEPS.2013.20.4.017
  4. M. Gonzalez, B. Vandervelde, W. Chistianens, Y.-Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. van der Sluis and P. H. M. Timmermans, "Thermo-Mechanical Analysis of Flexible and Stretchable Systems", 11th International Conference of Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (EuroSimE), Berlin, 1, Institute of Electrical and Electronics Engineers (2010).
  5. J. H. Ahn, H. Lee and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013). https://doi.org/10.6117/kmeps.2013.20.2.001
  6. J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang and J. A. Rogers, "Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates", App. Phys. Lett., 93, 013109 (2008). https://doi.org/10.1063/1.2955829
  7. T. Loher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. DeBaets, A. Ostmann and H. Reichl, "Stretchable Electronic Systems", Proc. 59th Electronic Components and Technology Conference (ECTC), San Diego, 893, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).
  8. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, "A Rubberlike Stretchable Active Matrix Using Elastic Conductors", Science, 321, 1468 (2008). https://doi.org/10.1126/science.1160309
  9. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
  10. M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde and J. Vanfleteren, "Design of Metal Interconnects for Stretchable Electronic Circuits", Microelectron. Reliab., 48, 825 (2008). https://doi.org/10.1016/j.microrel.2008.03.025
  11. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata and T. Someya, "Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors", Nature Mater., 8, 494 (2009). https://doi.org/10.1038/nmat2459
  12. J. H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
  13. D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). https://doi.org/10.1002/adma.200801788
  14. J. Y. Choi, D. H. Park and T. S. Oh, "Chip Interconnection Process for Smart Fabrics Using Flip-Chip Bonding of SnBi Solder", J. Microelectron. Packag. Soc., 19(3), 71 (2012). https://doi.org/10.6117/KMEPS.2012.19.3.071
  15. S. P. Lacour, S. Wagner, Z. Huang and Z. Suo, "Stretchable Gold Conductors on Elastomeric Substrates", Appl. Phys. Lett., 82, 2404 (2003). https://doi.org/10.1063/1.1565683
  16. Y. K. Son, J. E. Kim and I. Y. Cho, "Trends on Wearable Computer Technology and Market", Electronics and Telecommunications Trends, 23, 79 (2008).
  17. J. E. Kim, H. T. Jeong and I. Y. Cho, "Trend in Digital Clothing Technology", Electronics and Telecommunications Trends, 24, 20 (2009).
  18. S. W. Jung, J. S. Choi, J. B. Koo, C. W. Park, B. S. Na, J. Y. Oh, S. S. Lee and H. Y. Chu, "Stretchable Organic Thin-Film Transistors Fabricated on Elastomer Substrates Using Polyimide Stiff-Island Structures", ECS Solid State Lett., 4(1), P1 (2015). https://doi.org/10.1149/2.0011501ssl
  19. S. P. Lacour, S. Wagner, R. J. Narayan, T. Li and Z. Suo, "Stiff Subcritical Islands of Diamondlike Carbon for Stretchable Electronics", J. Appl. Phys., 100, 014913 (2006). https://doi.org/10.1063/1.2210170
  20. Y. Y. Hsu, C. Papakyrikos, M. Raj, M. Dalal, P. Wei, X. Wang, G. Hupport, B. Morey and R. Ghaffari, "Archipelago Platform for Skin-mounted Wearable and Stretchable Electronics", Proc. 64th Electronic Components and Technology Conference (ECTC), Orlando, 145, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2014).
  21. R. Li, M. Li, Y. Su, J. Song and X. Ni, "An Analytical Mechanics Model for the Island-Bridge Structure of Stretchable Electronics", Soft Matt., 9, 8476 (2013). https://doi.org/10.1039/c3sm51476e
  22. C. R. Barrett, A. S. Tetelman and W. D. Nix, "The Principles of Engineering Materials", pp.316-325, Prentice Hall, Inc., Englewood Cliffs (1973).
  23. S. Popovics, "Quantitative Deformation Model for Two-phase Composites Including Concrete", Mater. Struct., 20, 171 (1987). https://doi.org/10.1007/BF02472733
  24. S. Popovics and M. R. A. Erdey, "Estimation of the Modulus of Elasticity of Concrete-like Composite Materials", Mater. Struct., 3, 253 (1970).

피인용 문헌

  1. 신축 전자패키지 배선용 금속박막의 신축변형-저항 특성 II. Au, Pt 및 Cu 박막의 특성 비교 vol.24, pp.3, 2015, https://doi.org/10.6117/kmeps.2017.24.3.019
  2. 신축 전자패키지 배선용 금속박막의 신축변형-저항 특성 I. Parylene F 중간층 및 PDMS 기판의 Swelling에 의한 영향 vol.24, pp.3, 2015, https://doi.org/10.6117/kmeps.2017.24.3.027
  3. 신축성 전자패키지용 강성도 국부변환 신축기판의 계면접착력 향상공정 vol.25, pp.4, 2015, https://doi.org/10.6117/kmeps.2018.25.4.111
  4. Island-Bridge 구조의 강성도 경사형 신축 전자패키지의 유효 탄성계수 및 변형거동 분석 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.039
  5. PDMS 기반 강성도 경사형 신축 전자패키지의 신축변형-저항 특성 vol.26, pp.4, 2015, https://doi.org/10.6117/kmeps.2019.26.4.047
  6. 강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성 vol.26, pp.4, 2015, https://doi.org/10.6117/kmeps.2019.26.4.055