DOI QR코드

DOI QR Code

액체-액체 동축형 스월 인젝터의 수치적 모사를 위한 SPH 코드 개발 및 검증

SPH Code Development and Validation for Numerical Simulation of Liquid-Liquid Swirl Coaxial Injector

  • Kim, You-Cheon (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Sirotkin, Fedir V. (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-Ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2013.10.23
  • 심사 : 2014.12.16
  • 발행 : 2015.01.01

초록

지금까지 인젝터의 수치적 시뮬레이션은 대부분 Eulerian 기법의 바탕위에서 이루어져 왔다. 그러나 액체제트의 미립화현상과 복잡한 공기와의 경계면 변화를 나타내는데 있어 기존의 기법들이 갖는 선천적인 단점이 존재하며 따라서 본 연구에서는 새로운 Smoothed Particle Hydrodynamics(SPH)라는 입자 기법을 도입하였다. 수치적 시뮬레이션을 위해 먼저 해석을 위한 SPH 코드를 개발하였으며 본 논문에서는 인젝터 문제를 정확하게 나타내는데 있어 필수적인 알고리즘중 하나인 다상유동모사에 대한 검증문제가 제시 되어 있다. 마지막으로 다양한 인젝터 종류 중 하나인 액체-액체 동축형 스월 인젝터에 대한 시뮬레이션이 수행되었으며 실제실험과의 비교를 진행하였다.

Most jet spray and atomization simulations are done with the Eulerian method which has inherent disadvantage in representing jet breakups and droplets. Full Lagrangian particles method called Smoothed Particle Hydrodynamics(SPH) is used in this work. We develop the SPH code and perform validations that confirm the suitability of our SPH method for simulating liquid jet atomization problem. Then, we conduct the simulation of liquid-liquid swirl coaxial injector for comparison against the experimental data.

키워드

참고문헌

  1. Lebas, R., Menard, T., Beau, P. A., Berlemont, A. and Demoulin, F. X., "Numerical simulation of primary break-up and atomization: DNS and modelling study," International Journal of Multiphase Flow, 35, 2009, pp. 247-260 https://doi.org/10.1016/j.ijmultiphaseflow.2008.11.005
  2. Menard, T., Tanguy, S. and Berlemont, A., "Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet," International Journal of Multiphase Flow, 33, 2007, pp. 510-524 https://doi.org/10.1016/j.ijmultiphaseflow.2006.11.001
  3. Fuster, D., Bague, A., Boeck, T., Moyne, L. L., Leboissetier, A., Popinet, S., Ray, P., Scardovelli, R. and Zaleski, S., "Simulation of primary atomization with an octree adaptive mesh refinement and VOF method," International Journal of Multiphase Flow, 35, 2009, pp. 550-565 https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.014
  4. Liu, G. R. and Liu, M. B., Smoothed Particle Hydrodynamics a meshfree particle method, World Scientific, New Jersey, 2003, pp. 42-46, 125-127
  5. Monaghan, J. J., "Simulating Free Surface Flows with SPH," Journal of Computational Physics, 110, 1992, pp. 399-406
  6. Nugent, S. and Posch, H. A., "Liquid drops and surface tension with smoothed particle applied mechanics," Physical Review E, 62, 2000
  7. Morris, J. P., "simulating surface tension with smoothed particle hydrodynamics," International Journal for Numerical Methods in Fluids, 33, 2000, pp. 333-353 https://doi.org/10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
  8. Brackbill, J. U., Kothe, D. B. and Zemach, C., "A continuum method for modeling surface tension," Journal of Computational Physics, 100, 1992, pp. 335-354 https://doi.org/10.1016/0021-9991(92)90240-Y
  9. Sirotkin, F. V. and Yoh, J. J., "A new particle method for simulating breakup of liquid jets," Journal of Computational Physics, 231, 2012, pp.1650-1674 https://doi.org/10.1016/j.jcp.2011.10.020
  10. Price, D. J., "Modelling discontinuities and Kelvin-Helmholtz instabilities in SPH," Journal of Computational Physics, 227, 2008, pp. 10040-10057 https://doi.org/10.1016/j.jcp.2008.08.011
  11. Kim, D. J., Im, J. H., Koh, H. S. and Yoon, Y. B., "Effect of Ambient Gas Density on Spray Characteristics of Swirling Liquid Sheets," Journal of Propulsion and Power, 23, 2007, pp. 603-611 https://doi.org/10.2514/1.20161
  12. Borodin, V. A., Dityakin, Y. F., Klyachko, L. A. and Tagodkin, V. I., "Atomization of Liquids," Air Force Foreign Technology Division Report, 1968, FTD-MT-24-97-68(AD685151)
  13. Squire, H. B., "Investigation of the Instability of a moving liquid flim," British Journal of Applied Physics, 4, 1953, pp.167-169 https://doi.org/10.1088/0508-3443/4/6/302
  14. Dombrowski, N. and Hooper, P. C., "The effect of ambient density on drop fromation in sprays," Chemical Engineering Science, 17, 1962, pp.291-305 https://doi.org/10.1016/0009-2509(62)85008-8
  15. Suyari, M. and Lefebvre, A. H., "Film thickness measurements in a simplex swirl atomizer," Journal of Propulsion and Power, 2, 1986, pp. 528-533 https://doi.org/10.2514/3.22937
  16. Kim, D. J., Han, P. G., Im, J. H., Yoon, Y. B. and Bazarov, V. G., "Effect of Recess on the Spray Characteristics of Liquid-Liquid Swirl Coaxial Injectors," Journal of Propulsion and Power, 23, 2007, pp.1194-1203 https://doi.org/10.2514/1.30450
  17. Seol, W.S., Han, Y. M., Yoon, M. S., Lee, D. S. and Yagodkin, V. I., "A visualization study of dual spray interaction of a dual-orifice fuel injector at low pressure drop," Journal of Flow Visualization & Image Processing, 5, 1998, pp.41-50 https://doi.org/10.1615/JFlowVisImageProc.v5.i1.50