References
- Almaraz RT, Tian Y, Bhattarcharya R, et al (2014). Metabolic flux increases glycoprotein sialylation: implications for cell adhesion and cancer metastasis. Mol Cell Proteomics, 11, 112.
- Borzym-Kluczyk M, Radziejewska I (2013). Changes of the expression of Lewis blood group antigens in glycoproteins of renal cancer tissues. Acta Biochim Pol, 60, 223-6.
- Brugarolas J (2014). Molecular genetics of clear-cell renal cell carcinoma. J Clin Oncol, 32, 1968-76. https://doi.org/10.1200/JCO.2012.45.2003
- Bull C, Boltje TJ, Wassink M, et al (2013). Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Mol Cancer Ther, 12, 1935-46. https://doi.org/10.1158/1535-7163.MCT-13-0279
- Bull C, Stoel MA, den Brok MH, et al (2014). Sialic acids sweeten a tumor's life. Cancer Res, 74, 3199-204. https://doi.org/10.1158/0008-5472.CAN-14-0728
- Dall'Olio F (2000). The sialyl-alpha2, 6-lactosaminyl-structure: biosynthesis and functional role. Glycoconj J, 17, 669-76. https://doi.org/10.1023/A:1011077000164
- Escudier B, Eisen T, Porta C, et al (2012). Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 23, 65-71. https://doi.org/10.1093/annonc/mdr034
- Escudier B, Kataja V (2010). Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 21, 137-9. https://doi.org/10.1093/annonc/mdq206
- Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, et al (2001). The human sialyltransferase family. Biochimie, 83, 727-37. https://doi.org/10.1016/S0300-9084(01)01301-3
- Harrell FE, Jr., Lee KL, Mark DB (1996). Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med, 15, 361-87. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
- Hedlund M, Ng E, Varki A, et al (2008). alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res, 68, 388-94. https://doi.org/10.1158/0008-5472.CAN-07-1340
- Kannagi R (2004). Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression-The Warburg effect revisited. Glycoconj J, 20, 353-64.
- Lee M, Park JJ, Ko YG, et al (2012). Cleavage of ST6Gal I by radiation-induced BACE1 inhibits golgi-anchored ST6Gal I-mediated sialylation of integrin beta1 and migration in colon cancer cells. Radiat Oncol, 7, 47. https://doi.org/10.1186/1748-717X-7-47
- Li B, Qiu B, Lee DS, et al (2014). Fructose-1, 6-bisphosphatase opposes renal carcinoma progression. Nature, 513, 251-5. https://doi.org/10.1038/nature13557
- Liu Z, Swindall AF, Kesterson RA, et al (2011). ST6Gal-I regulates macrophage apoptosis via alpha2-6 sialylation of the TNFR1 death receptor. J Biol Chem, 286, 39654-62. https://doi.org/10.1074/jbc.M111.276063
- Lotan Y, Bagrodia A, Passoni N, et al (2013). Prospective evaluation of a molecular marker panel for prediction of recurrence and cancer-specific survival after radical cystectomy. Eur Urol, 64, 465-71. https://doi.org/10.1016/j.eururo.2013.03.043
- Motzer RJ, Agarwal N, Beard C, et al (2009). NCCN clinical practice guidelines in oncology: kidney cancer. J Natl Compr Canc Netw, 7, 618-30.
- Network CGAR (2013). Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499, 43-9. https://doi.org/10.1038/nature12222
- Philips GK, Atkins MB (2014). New agents and new targets for renal cell carcinoma. Am Soc Clin Oncol Educ Book, 222-7.
- Preston RS, Philp A, Claessens T, et al (2011). Absence of the Birt-Hogg-Dube gene product is associated with increased hypoxia-inducible factor transcriptional activity and a loss of metabolic flexibility. Oncogene, 30, 1159-73. https://doi.org/10.1038/onc.2010.497
- Seales EC, Jurado GA, Singhal A, et al (2003). Ras oncogene directs expression of a differentially sialylated, functionally altered beta1 integrin. Oncogene, 22, 7137-45. https://doi.org/10.1038/sj.onc.1206834
- Swindall AF, Bellis SL (2011). Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fasmediated apoptosis in colon carcinoma cells. J Biol Chem, 286, 22982-90. https://doi.org/10.1074/jbc.M110.211375
- Swindall AF, Londono-Joshi AI, Schultz MJ, et al (2013). ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines. Cancer Res, 73, 2368-78. https://doi.org/10.1158/0008-5472.CAN-12-3424
- Tanriverdi O (2013). Review on targeted treatment of patients with advanced-stage renal cell carcinoma: a medical oncologist's perspective. Asian Pac J Cancer Prev, 14, 609-17. https://doi.org/10.7314/APJCP.2013.14.2.609
- Wang X, He H, Zhang H, et al (2013). Clinical and prognostic implications of beta1, 6-N-acetylglucosaminyltransferase V in patients with gastric cancer. Cancer Sci, 104, 185-93. https://doi.org/10.1111/cas.12049
- Zhu XD, Zhang JB, Zhuang PY, et al (2008). High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol, 26, 2707-16. https://doi.org/10.1200/JCO.2007.15.6521
- Zhuo Y, Bellis SL (2011). Emerging role of alpha2, 6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem, 286, 5935-41. https://doi.org/10.1074/jbc.R110.191429
- Zisman A, Pantuck AJ, Wieder J, et al (2002). Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J Clin Oncol, 20, 4559-66. https://doi.org/10.1200/JCO.2002.05.111
Cited by
- α2,6-Sialylation mediates hepatocellular carcinoma growth in vitro and in vivo by targeting the Wnt/β-catenin pathway vol.6, pp.5, 2017, https://doi.org/10.1038/oncsis.2017.40