DOI QR코드

DOI QR Code

Spreading Kinetics of Poly(diisobutylene maleic acid) at the Air-water Interface

  • Received : 2015.11.04
  • Accepted : 2015.12.07
  • Published : 2015.12.30

Abstract

The surface rheological properties of polymer monolayer show complicated non-linear viscoelastic flow phenomena when they are subjected to spreading flow. These spreading flow properties are controlled by the characteristics of flow units. The kinetics of the formation of an interfacial film obtained after spreading poly(diisobutylene maleic acid) at air-water interface were studied by measuring of the surface pressure with time. The experimental data were analyzed theoretically according to a nonlinear surface viscoelastic model. The values of dynamic modulus, static modulus, surface viscosities and rheological parameters in various area/ monomer were obtained by appling experimental data to the equation of nonlinear surface viscoelastic model.

Keywords

References

  1. O. Albrecht, H. Matsuda, K. Eguchi, and T. Nagagiri, "The dissolution of myristic acid monolayers in water", Thin Solid Films, 338, 252-264 (1999). https://doi.org/10.1016/S0040-6090(98)00998-5
  2. A. W. Adamson, Physical Chemistry of Surfaces, 5th ed., John Wiley & Sons, 116-127 (1990).
  3. M. I. Viseu, M. G. Amelia, and M. B. Costa, "Reorganization and Desorption of Catanionic Monolayers. Kinetics of A-t and A-t Relaxation", Langmuir, 17, 1529-1537 (2001). https://doi.org/10.1021/la001138y
  4. S. K. Gupta, D. M. Taylor, P. Dynarowicz, E. Barlow, C. E. A. Wainwright and A. E. Underhill, "Behavior of pure divalent bis(didodecyl dimethylammonium) bis(4,5-dimercapto-1,3-dithiole-2-thionato) metalate complexes at the air-water interface", Langmuir, 8, 3057-3062 (1992). https://doi.org/10.1021/la00048a035
  5. P. Cicuta, "Copression and shear surface rheology in spread layers of ${\beta}$-casein and ${\beta}$-lactoglobulin", J. Colloid Interface Sci., 308, 93-99 (2007). https://doi.org/10.1016/j.jcis.2006.12.056
  6. K. S. Birdi, Handbook of surface and colloid chemistry, CRC Press, New York (1997).
  7. D. Volhardt and V. B. Fainerman, "Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers", Adv. Colloid Interface Sci., 86, 103-151 (2000). https://doi.org/10.1016/S0001-8686(00)00034-8
  8. S. A. Roberts, I. W. Kellaway, K. M. G. Tayor, B. Warburton and K. Peters, "Combined surface pressure-interfacial shear rheology studies od the interaction of proteins with spread phospholipid monolayers at the air-water interface", International Journal of Pharmaceutics, 300, 48-55 (2005). https://doi.org/10.1016/j.ijpharm.2005.05.003
  9. N. J. Kim, E. R. Kim and S. J. Hahn, "The rheological and mechanical model for relaxation spectra of polydisperse polymers", Bull. Korean Chem., Soc., 13, 413-419 (1992).
  10. K. Balashev, A. Bois, J. E. Proust, Tz. Ivanova, I. Petkov, S. Masuda, and I. Panaiotov, "Comparative study of polyacryloylacetone monolayers at dichloromethane-water and air-water interfaces", Langmuir 13: 5362-5367 (1997). https://doi.org/10.1021/la9607058
  11. P. Ganguly, D. V. Paranjape, K. R. Patil, M. Sastry and F. Rondelez, "Role of tail-tail interactions versus head-groupsubphase interactions in pressure-area isotherms of fatty amines at the air-water interface. 2. Time dependence", Langmuir 13, 5440-5446 (1997). https://doi.org/10.1021/la960982e
  12. G. Gabrielli, G. G. T. Guarini and E. Ferroni, "On the mechanism of collapse of arachidic acid films at the water/air interface", J. Colloid Interface Sci., 54, 424-429 (1976). https://doi.org/10.1016/0021-9797(76)90322-2