References
- Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, et al. Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 2013;47(12):3866-3877. https://doi.org/10.1016/j.watres.2012.11.060
- Hendren CO, Badireddy AR, Casman E, Wiesner MR. Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Sci Total Environ 2013;449:418-425. https://doi.org/10.1016/j.scitotenv.2013.01.078
- Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A. Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 2008;19(24):245705. https://doi.org/10.1088/0957-4484/19/24/245705
- Farkas J, Peter H, Christian P, Gallego Urrea JA, Hassellov M, Tuoriniemi J, et al. Characterization of the effluent from a nanosilver producing washing machine. Environ Int 2011;37(6):1057-1062. https://doi.org/10.1016/j.envint.2011.03.006
- Golovina NB, Kustov LM. Toxicity of metal nanoparticles with a focus on silver. Mendeleev Commun 2013;23(2):59-65. https://doi.org/10.1016/j.mencom.2013.03.001
- Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellov M, Taylor C, et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 2014;466-467:232-241. https://doi.org/10.1016/j.scitotenv.2013.06.101
- Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, et al. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnology 2012;10:14. https://doi.org/10.1186/1477-3155-10-14
- Pang C, Selck H, Misra SK, Berhanu D, Dybowska A, Valsami-Jones E, et al. Effects of sediment-associated copper to the depositfeeding snail, Potamopyrgus antipodarum: a comparison of Cu added in aqueous form or as nano- and micro-CuO particles. Aquat Toxicol 2012;106-107:114-122. https://doi.org/10.1016/j.aquatox.2011.10.005
- Nair PM, Park SY, Lee SW, Choi J. Differential expression of ribo-somal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 2011;101(1):31-37. https://doi.org/10.1016/j.aquatox.2010.08.013
- Nair PM, Park SY, Choi J. Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius. Chemosphere 2013;92(5):592-599. https://doi.org/10.1016/j.chemosphere.2013.03.060
- Pang C, Selck H, Banta GT, Misra SK, Berhanu D, Dybowska A, et al. Bioaccumulation, toxicokinetics, and effects of copper from sediment spiked with aqueous Cu, nano-CuO, or micro-CuO in the deposit-feeding snail, Potamopyrgus antipodarum. Environ Toxicol Chem 2013;32(7):1561-1573. https://doi.org/10.1002/etc.2216
- Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 2008;27(9):1825-1851. https://doi.org/10.1897/08-090.1
- El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 2011;45(1):283-287. https://doi.org/10.1021/es1034188
- Zhao CM, Wang WX. Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 2012;46(20):11345-11351. https://doi.org/10.1021/es3014375
- Dai L, Syberg K, Banta GT, Selck H, Forbes VE. Effects, uptake, and depuration kinetics of silver oxide and copper oxide nanoparticles in a marine deposit feeder, Macoma balthica. ACS Sustain Chem Eng 2013;1(7):760-767. https://doi.org/10.1021/sc4000434
- Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW. Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 2012;100(4):1033-1043.
- Park Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011;32(36):9810-9817. https://doi.org/10.1016/j.biomaterials.2011.08.085
- Baek MJ, Yoon TJ, Bae YJ. Development of Glyptotendipes tokunagai (Diptera: Chironomidae) under different temperature conditions. Environ Entomol 2012;41(4):950-958. https://doi.org/10.1603/EN11286
- Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 2012;31(1):93-99. https://doi.org/10.1002/etc.708
- Organization for Economic Cooperation and Development (OECD). OECD guidelines for testing of chemicals, section 2. Test no. 235: chironomus sp., acute immobilisation Test; 2011 [cited 2014 Jan 23]. Available from: http://www.oecd-ilibrary.org/environment/oecdguidelines-for-the-testing-of-chemicals-section-2-effects-on-bioticsystems_20745761.
- United States Environmental Protection Agency. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms [cited 2014 Jan 23]. Available from: http://water.epa.gov/scitech/methods/cwa/wet/disk2_index.cfm.
- Jo HJ, Choi JW, Lee SH, Hong SW. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: the importance of their dissolved fraction varying with preparation methods. J Hazard Mater 2012;227-228:301-308. https://doi.org/10.1016/j.jhazmat.2012.05.066
- Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Organiccoated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci 2014;204:15-34. https://doi.org/10.1016/j.cis.2013.12.002
- Huynh KA, Chen KL. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 2011;45(13):5564-5571. https://doi.org/10.1021/es200157h
- Stebounova LV, Guio E, Grassian VH. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 2011;13(1):233-244. https://doi.org/10.1007/s11051-010-0022-3
- Tejamaya M, Romer I, Merrifield RC, Lead JR. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 2012;46(13):7011-7017. https://doi.org/10.1021/es2038596
- Zook JM, Long SE, Cleveland D, Geronimo CL, MacCuspie RI. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem 2011;401(6):1993-2002. https://doi.org/10.1007/s00216-011-5266-y
- Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticledispersion properties. Nanoscale Res Lett 2011;6:27.
- Dobias J, Bernier-Latmani R. Silver release from silver nanoparticles in natural waters. Environ Sci Technol 2013;47(9):4140-4146. https://doi.org/10.1021/es304023p
- Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, et al. Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano 2013;7(12):10681-10694. https://doi.org/10.1021/nn4034103
- Zhao CM, Wang WX. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 2011;30(4):885-892. https://doi.org/10.1002/etc.451
Cited by
- Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus) vol.50, pp.16, 2016, https://doi.org/10.1021/acs.est.6b01441
- Combined impact of silver nanoparticles and chlorine on the cell integrity and toxin release of Microcystis aeruginosa vol.272, pp.None, 2015, https://doi.org/10.1016/j.chemosphere.2021.129825
- In vivo toxicity evaluation of nanoemulsions for drug delivery vol.44, pp.6, 2015, https://doi.org/10.1080/01480545.2019.1659806