DOI QR코드

DOI QR Code

Comparing the Structure of Secondary School Students' Perception of the Meaning of 'Experiment' in Science and Biology

중등학생들의 과학과 생물에서의 '실험'의 의미에 대한 인식구조 비교

  • Received : 2015.12.04
  • Accepted : 2015.12.28
  • Published : 2015.12.31

Abstract

Perception of the experiment is one of the most important factors of students' understanding of scientific inquiry and the nature of science. This study examined the perception of middle and high school students of the meaning of 'experiment' in the biological sciences. Semantic network analysis (SNA) was especially used to visualize students' perception structure in this study. One hundred and ninety middle school students and 200 high school students participated in this study. Students responded to two questions on the meaning of 'experiment' in science and biology. This study constructed four semantic networks based on the collected response. As a result, middle school students about the 'experiment' in science are 'we', 'direct', 'principle' of such words was aware of the experiments from the center to the active side. The high school students' 'theory', 'true', 'information' were recognized as an experiment that explores the process of creating a knowledge center including the word. In addition, middle school students relative to 'experiment' of the creature around the 'dissection', 'body', high school students were recognized as 'life', 'observation' observation activities dealing with the living organisms and recognized as a core. The results of this study will be used as important evidence in the future to map out an experiment in biological science curriculum.

실험에 대한 메타적 인식은 학생들의 과학적 탐구와 과학의 본성에 대한 이해의 중요한 요소 중 하나이다. 이 연구에서는 중학생과 고등학생의 과학과 생물에서의 '실험'의 의미에 대한 인식을 알아보았다. 특히 이 연구에서는 언어 네트워크 분석방법을 사용하여 학생들의 인식을 구조적으로 확인하였다. 이 연구를 위해 190명의 중학생과 200명의 고등학생 이 연구에 참여하였다. 학생들은 과학에서의 '실험'과 생물에서의 '실험'의 의미에 대한 두 문항에 서술형으로 응답하였다. 수집된 응답을 바탕으로 총 4개의 언어 네트워크가 구성되었다. 연구 결과, 과학에서의 '실험'에 대하여 중학생들은 '우리', '직접', '원리' 등의 단어를 중심으로 활동적 측면에서의 실험을 인식하였다. 반면 고등학생은 '이론', '사실', '내용' 등의 단어를 중심으로 지식을 생성하는 탐구과정으로서의 실험으로 인식하였다. 또한 생물에서의 '실험'에 대하여 중학생은 '해부', '몸'을 중심으로, 고등학생은 '생명', '관찰'이 중심으로 인식하여 생명체를 다루는 관찰활동으로 인식하였다. 이러한 연구결과는 앞으로 과학 교과 및 생물 교과에서 실험을 지도하는데 있어서 중요한 근거자료로 활용될 수 있을 것이다.

Keywords

References

  1. Anderson, J. R. (1983). A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior, 22, 261-295. https://doi.org/10.1016/S0022-5371(83)90201-3
  2. Bodzin, A. & Gegringer, M. (2001). Breaking science stereotypes. Science and Children, 38(4), 36-41.
  3. Brown, C. R. (1995). The effective teaching of biology. New York, USA: Longman Publishing Company.
  4. Cho, H. J., & Yang, I. H. (2005). Review on the aims of laboratory activities in school science. Elementary Science Education, 24(3), 268-280.
  5. Cho, H., Yang, I., & Lee, H. (2008). Comparison between secondary school science teachers' and students' perceptions about the important aims of laboratory. Journal of Science Education, 32(2), 103-120. https://doi.org/10.21796/jse.2008.32.2.103
  6. Collins, A. M., Loftus, E. F. (1975). A spreading activation theory of semantic processing. Psychological Review, 82(6), 407-428. https://doi.org/10.1037/0033-295X.82.6.407
  7. diSessa, A. A. (2008). A bird's-eye view of the "pieces"vs. "coherence" controversy. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 35-60). New York: Routledge.
  8. Doerfel, M. L., & Barnett, G. A. (1999). A semantic network analysis of the international communication association. Human Communication Research, 25(4), 589-603. https://doi.org/10.1111/j.1468-2958.1999.tb00463.x
  9. Fisher, K. (1990). Semantic networking: The newkids on the block. Journal of Research in Science Teaching, 27(10), 1001-1018. https://doi.org/10.1002/tea.3660271008
  10. Galison, P. (1987). How experiments end. Chicago: The University of Chicago Press.
  11. Galison, P. (1997). Three laboratories. Social Research, 64(3), 1127-1155.
  12. Grunspan, D. Z., Wiggins, B. L., & Goodreau, S. M. (2014). Understanding classrooms through social network analysis: A primer for social network analysis in education research. CBE-Life Science Education, 13, 167-178. https://doi.org/10.1187/cbe.13-08-0162
  13. Hacking, I. (1983). The Representing and intervening: Introductory topics in philosophy of natural science. Cambridge: Cambridge University Press.
  14. Hacking, I. (1989). Philosophers of experiments. In A Hine & J. Leplin (Eds.), PSA 1988, East lancing (pp. 147-156). Michigan: Philosophy of Science Association.
  15. Hammer, D. (1996). Misconceptions or p-prims: How may alternative perspectives of cognitive structure influence instructional perceptions and intentions. The Journal of the Learning Sciences, 5(2), 97-127. https://doi.org/10.1207/s15327809jls0502_1
  16. Han, S. Y. (2004). Educational reflections on laboratory experiment in school science. The Journal of Educational Principles, 9(1), 47-82.
  17. Hodson, D. (1996). Is this really what scientist do? Seeking a more authentic science in and beyond the school laboratory. In J. J. wellington (Ed.). Practical Work in School Science. NY: Routledge, 93-108.
  18. Hovardas, T., & Korfiatis, K. J. (2006). Word associations as a tool for assessing conceptual change in science education. Learning and instruction, 16, 416-432. https://doi.org/10.1016/j.learninstruc.2006.09.003
  19. Kim, H., & Song, J. (2003). Middle school students' ideas about the purposes of laboratory work. Journal of the Korean Association for Science Education, 23(3), 254-264.
  20. Lawson, A. (1995). Science teaching and the development of thinking. Belmont, CA: Wadsworth Publishing.
  21. Lee, J. K., & Ha, M. (2012). Semantic network analysis of science gifted middle school students' understanding of fact, hypothesis, theory, law, and scientificness. Journal of the Korean Association for Science Education, 32(5), 823-840. https://doi.org/10.14697/jkase.2012.32.5.823
  22. Lee, S. (2002). Two roles of experiment: Fact aquisition and theory testing. Cheolhak, 72, 273-294.
  23. Lee, S. (2009). Phenomena and instruments. Hanul Academy: Seoul.
  24. Lewicki, R. J., Gray, B., & Elliot, M.. (2003). Making sense of intractable environmental conflicts: Concepts and cases. Washington D. C.: Island Press.
  25. Mayr, E. (1997). This is biology: The science of living world. Belknap Press of Harvard University Press: Cambridge, MA.
  26. Park, H. W., & Leydesdorf, L. (2004). Understanding the KrKwic: A computer program for the analysis of Korean text. Journal of the Korean Data Analysis Society. 6(5), 1377-1387.
  27. Park, J. (2003). An analysis of the experimental designs suggested by students for testing scientific hypotheses. Journal of the Korean Association for Science Education, 23(2), 200-213.
  28. Park, S. H., Ko, K. T., Jeong, J. S., & Kwon, Y. J. (2005). Types of hypothesis-testing methods generated in students' biology inquiry. Journal of the Korean Association for Science Education, 25(2), 230-238.
  29. Quillian, M. R. (1967). Word concepts: A theory and simulation of some basic semantic capabilities. Behavioral Sciences, 12, 410-430. https://doi.org/10.1002/bs.3830120511
  30. Radder, H. (1988). The material realization of science. Assen/Maastricht, The Netherlands: Van Gorcum.
  31. Radder, H. (1993). Science, realization and reality: The Fundamental issues. Studies in History and Philosophy of Science, 24, 327-349. https://doi.org/10.1016/0039-3681(93)90032-F
  32. Radder, H. (2003). The philosophy of experimentation. Pittsburgh, PA: University of Pittsburgh Press.
  33. Simpson, R. D., & Anderson, N. D. (1981). Science, students, and schools: A guide for the middle and secondary school teacher, NY: Macmillan Publishing Company.
  34. Thagard, P. (1998). Ulcers and bacteria I : Discovery and acceptance. Studies in history and philosophy of biological and biomedical science, 29(1), 107-136. https://doi.org/10.1016/S1369-8486(98)00006-5
  35. Wassetman, S., & Faust, K. (1994). Social network analysis: Methods and applications. The Press Syndicate of the University of Cambridge.
  36. Welzel, M., Haller, K., Bandiera, M., Hammelev, D., Koumars, P., Niedderer, H., Paulsen, A. C., Beou-Robinault, K., & von Aufschnaiter, S. (1988). Teachers' objectives for labworks; research tool and cross country results. Working paper 6, labworks in Science Education Project.
  37. Wheeler, W. H. (1929). Present tendencies in biological theory. The Scientific Monthly, 28, 97-109.
  38. Woolnough, B. E. (1994). Effective science teaching. Buckingham: Open University Press.
  39. Yang, I. H., Jeong, J. W., Hur, M. & Kim, S. M. (2006). The development of laboratory instruction classification scheme. Journal of the Korean Association for Science Education, 26(3), 342-355.
  40. Yang, I. H., Kim, S. M. & Cho, H. J. (2007). Analysis of the types of laboratory instruction in elementary and secondary schools science. Journal of the Korean Association for Science Education, 27(3), 235-241.

Cited by

  1. 관찰과 재현에 대한 예비 생물교사들의 가치지향점 -객관성을 중심으로- vol.36, pp.4, 2016, https://doi.org/10.14697/jkase.2016.36.4.0617
  2. 교육대학교 학생들의 '전기' 용어의 연상 단어 및 정의에 대한 네트워크 분석 vol.36, pp.5, 2016, https://doi.org/10.14697/jkase.2016.36.5.0791
  3. 의과대학생들의 생명 개념 인식에 관한 탐색적 연구 vol.19, pp.1, 2017, https://doi.org/10.17496/kmer.2017.19.1.36
  4. 언어네트워크분석을 활용한 대학부설 과학영재교육원 교육프로그램의 학습목표 특성 분석 vol.27, pp.1, 2015, https://doi.org/10.9722/jgte.2017.27.1.17
  5. Exploring the Perception Structure of Science Teachers on Basic Science, Applied Science, and Convergence Science vol.56, pp.4, 2015, https://doi.org/10.15812/ter.56.4.201712.487
  6. 언어네트워크분석을 통해 본 과학중점학교 과학수업의 특징 vol.38, pp.4, 2015, https://doi.org/10.14697/jkase.2018.38.4.565
  7. 언어네트워크분석을 통해 본 과학중점학교 과학수업의 특징 vol.38, pp.4, 2015, https://doi.org/10.14697/jkase.2018.38.4.565
  8. 언어네트워크분석을 통해 본 과학중점학교 과학수업의 특징 vol.38, pp.4, 2015, https://doi.org/10.14697/jkase.2018.38.4.565
  9. 환경관련 실험 분석을 통한 실험의 환경교육적 고찰 vol.32, pp.2, 2019, https://doi.org/10.17965/kjee.2019.32.2.139
  10. 에너지에 대한 초등학생들의 개념 탐색 vol.43, pp.3, 2019, https://doi.org/10.21796/jse.2019.43.3.284
  11. 뉴미디어 콘텐츠에서 재현되는 과산화수소 분해 실험의 이미지 -시뮬라크르와 시뮬라시옹을 중심으로- vol.40, pp.1, 2015, https://doi.org/10.14697/jkase.2020.40.1.13
  12. 키워드 네트워크 분석을 통해 살펴본 초등학생이 인식하는 과학 학습 참여의 의미 vol.39, pp.2, 2020, https://doi.org/10.15267/keses.2020.39.2.255
  13. Investigating junior high school students’ perception of global warming topic using semantic network analysis vol.1806, pp.1, 2015, https://doi.org/10.1088/1742-6596/1806/1/012124