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Abstract. The object of the present paper is to derive some inclusion and subordination

results for certain classes of multivalent analytic functions in the open unit disk, which

are defined in terms of the Cho-Kwon-Srivastava operator. Some interesting corollaries

are derived and the relevant connection of the results obtained in this paper with various

known results are also pointed out.

1. Introduction and Preliminaries

Let Ap be the class of functions of the form

(1.1) f(z) = zp +
∞∑
k=1

ak+pz
k+p (p ∈ N = {1, 2, . . .})

which are analytic and p-valent in the open unit disk U = {z ∈ C : |z| < 1}. For
convenience, we denote A1 = A.

For functions f and g, analytic in U, we say that f is subordinate to g, written
as f ≺ g or f(z) ≺ g(z) (z ∈ U), if there exists a Schwarz function ω, which (by
defintion) is analytic in U with ω(0) = 0, |ω(z)| < 1 and f(z) = g(ω(z)), z ∈ U. In
particular, if the function g is univalent in U, then we have the following equivalence
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relation (cf., e.g., [13]; see also [15]):

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Let Ψ : C2×U −→ C and h be univalent in U. If φ is analytic in U and satisfies
the (first-order) differential subordination

(1.2) Ψ (φ(z), zφ′(z); z) ≺ h(z),

then φ is called a solution of the differential subordination. A univalent function
q is called a dominant of the solutions of the differential subordination, or more
simply a dominant, if φ ≺ q for all φ satisfying (1.2). A dominant q̃ that satisfies
q̃ ≺ q for all dominants q of (1.2) is said to be the best dominant of (1.2). We note
that the best dominant is unique up to a rotation of U.

For functions fj(z) =
∑∞

k=0 ak,jz
k (j = 1, 2) analytic in U, we define the

Hadamard product (or convolution) of f1 and f2 by

(f1 ⋆ f2)(z) =
∞∑
k=0

ak,1ak,2z
k = (f2 ⋆ f1)(z) (z ∈ U).

A function f ∈ Ap is said to be p-valently starlike of complex order b and type
ρ, that is, f ∈ S∗p(b; ρ), if it satisfies the inequality:

(1.3) Re

{
1 +

1

b

(
zf ′(z)

f(z)
− p

)}
> ρ (b ∈ C∗ = C \ {0}, 0 ≤ ρ < 1; z ∈ U).

Analogously, a function f ∈ Ap is said to be p-valently convex of complex order
b and type ρ, that is, f ∈ Cp(b; ρ), if it satisfies the inequality:

(1.4) Re

{
1 +

1

b

(
1 +

zf ′′(z)

f ′(z)
− p

)}
> ρ (b ∈ C∗, 0 ≤ ρ < 1; z ∈ U).

From (1.3) and (1.4), it follows that

f ∈ Cp(b; ρ) ⇐⇒ zf ′(z)

p
∈ S∗p(b; ρ).

In particular, the classes S∗1(b; ρ) and C1(b; ρ) reduces to the classes S∗(b; ρ) and
C(b; ρ) of starlike functions of complex order b and type ρ, and convex functions of
complex order b and type ρ (b ∈ C∗; 0 ≤ ρ < 1), respectively, which were introduced
by Frasin [5].

We, further observe that S∗p(p;α/p) = S∗p(α) and Cp(p;α/p) = Cp(α) are, re-
spectively, the classes of p-valently starlike and p-valently convex functions of order
α (0 ≤ α < p) in U. Also, we note that S∗1(ρ) = S∗(ρ) and C1(ρ) = C(ρ) are the
usual classes of starlike and convex functions of order ρ (0 ≤ ρ < 1) in U. In the
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special cases, S∗(0) = S∗ and C(0) = C are the familiar classes of starlike and convex
functions in U.

For a ∈ R and c ∈ R \ Z−
0 , where Z−

0 = {. . . ,−2,−1, 0}, Saitoh [20] introduced
a linear operator Lp(a, c) : Ap −→ Ap defined by

Lp(a, c)f(z) = φp(a, c; z) ⋆ f(z) (f ∈ Ap; z ∈ U),

where φp is the incomplete beta function defined by

(1.5) φp(a, c; z) =
∞∑
k=0

(a)k
(c)k

zp+k (z ∈ U),

and the symbol (x)k denotes the Pochhammer symbol (or shifted factorial) given
by

(x)k =

{
1, (k = 0, x ∈ C∗)

x(x+ 1) · · · (x+ k − 1), (k ∈ N, x ∈ C).

The operator Lp(a, c) is an extension of the Carlson-Shaffer operator [2]. In [3],
Cho et al. introduced the family of linear operators Iλp(a, c) : Ap −→ Ap analogous
to Lp(a, c) as follows:

(1.6) Iλp(a, c)f(z) = φ(†)
p (a, c; z) ⋆ f(z) (a, c ∈ R \ Z−

0 , λ > −p; z ∈ U),

where φ
(†)
p (a, c; z) is the function defined in terms of the Hadamard product (or

convolution) by the following relation

(1.7) φp(a, c; z) ⋆ φ
(†)
p (a, c; z) =

zp

(1− z)λ+p
(λ > −p; z ∈ U),

where φp(a, c; z) is given by (1.5). It follows from (1.5) and (1.7) that

φ(†)
p (a, c; z) =

∞∑
k=0

(λ+ p)k(c)k
(1)k(a)k

zp+k (z ∈ U)

so that if f ∈ Ap is given by (1.1), then it is easily seen from the above expression
and (1.6) that

(1.8) Iλp(a, c)f(z) = zp +

∞∑
k=1

(λ+ p)k(c)k
(1)k(a)k

ap+kz
p+k (z ∈ U),

which readily yields the following identities:

(1.9) z
(
Iλp(a+ 1, c)f(z)

)′
= a Iλp(a, c)f(z)− (a− p) Iλp(a+ 1, c)f(z) (z ∈ U)

and

z
(
Iλp(a, c)f(z)

)′
= (λ+ p) Iλ+1

p (a, c)f(z)− λ Iλp(a, c)f(z) (z ∈ U).
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We observe that

(i) I1p(p+ 1, 1)f(z) = Iλp(λ+ p, 1)f(z) = f(z),

(ii) I1p(p, 1)f(z) =
zf ′(z)

p
,

(iii) Inp (a, a)f(z) = Dn+p−1f(z) (n > −p) (see Goel and Sohi [6]),

(iv) I1−µ
p (p − µ, p + 1)f(z) = Ω

(µ,p)
z f(z) (−∞ < µ < p + 1) (see Patel and

Mishra [17]),

and

(v) Iδp(δ + p + 1, 1)f(z) = Fδ,p(f)(z) (δ > −p; z ∈ U), the familiar Bernardi-
Libera-Livingston integral operator (see, for example [4]).

We note that for the function f , given by (1.1)

Fδ,p(f)(z) =
δ + p

zδ

∫ z

0

tδ+p−1f(t)dt(1.10)

= zp +
∞∑
k=1

δ + p

δ + k + p
ak+pz

k+p (δ > −p; z ∈ U).

Cho et al. [3] established some inclusion relationships and argument properties
for certain subclasses ofAp, which were defined in terms of their operator Iλp(a, c)(see
also [18]). For the choices λ = c = 1 and a = n + p, the Cho-Kwon-Srivastava
operator Iλp(a, c) reduces to the operator I1p(n + p, 1) = In,p (n > −p), where In,p
is the integral operator studied by Liu and Noor [9](for details, see [10] and [11]).
The Choi-Saigo-Srivastava operator Iλ1 (µ + 2, 1) (λ > −1;µ > −2) was studied in

[4]. The operator Ω
(µ,p)
z for 0 ≤ µ < 1 was investigated by Srivastava and Aouf [22]

and studied by Srivastava and Mishra [24]. Patel and Mishra [17] also studied
certain classes of multivalent analytic functions involving the extended differintegral

operator Ω
(µ,p)
z when −∞ < µ < p+ 1. We further observe that Ω

(µ,1)
z = Ωµ

z is the
operator introduced and studied by Owa and Srivastava [16].

Using the Cho-Kwon-Srivastava operator Iλp(a, c) and the principle of subordi-
nation between analytic functions, we now define a subclass of Ap as follows:

Definition 1.1 For fixed parameters A,B (−1 ≤ B < A ≤ 1), 0 ≤ β ≤ 1 and
0 ≤ α < p, we say that a function f ∈ Ap is in the class Vλ

p,β(a, c, α,A,B), if it
satisfies the following subordination condition:

1

p− α

{
z
(
Iλp(a, c)f(z)

)′
+ βz2

(
Iλp(a, c)f(z)

)′′
(1− β)Iλp(a, c)f(z) + βz

(
Iλp(a, c)f(z)

)′ − α

}
(1.11)

≺ 1 +Az

1 +Bz
(a, c ∈ R \ Z−

0 , λ > −p; z ∈ U).

A subclass of Ap, more general than the class Vλ
p,β(a, c, α,A,B) has been re-
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cently studied by Noor et al. [12]. For convenience, we denote

V1
p,β(p+ 1, 1, α,A,B) = Vλ

p,β(λ+ p, 1, α,A,B) = Vp,β(α;A,B)

=

{
f ∈ Ap :

zf ′(z) + βz2f ′′(z)

(1− β)f(z) + βzf ′(z)
≺ p+ {pA+ (B −A)α}z

1 +Bz
, z ∈ U

}
,

where 0 ≤ α < p, λ > −p;−1 ≤ B < A ≤ 1 and

Vp,β(α, 1,−1) = Vp,β(α) (0 ≤ α < p)

=

{
f ∈ Ap : Re

(
zf ′(z) + βz2f ′′(z)

(1− β)f(z) + βzf ′(z)

)
> α; z ∈ U

}
.

We observe that Vp,0(α) = S∗p(α),Vp,1(α) = Cp(α) (0 ≤ α < p) and

Tβ(p;α) = V1
p,β(p+ 1, 1, α, 1,−1) (0 ≤ β ≤ 1; 0 ≤ α < p)

is the class studied in [8].

Remark 1.1. If, we write

g(z) =
(1− β)f(z) + βzf ′(z)

(1− β + pβ)
(0 ≤ β ≤ 1; z ∈ U),

then it follows that

Iλp(a, c)g(z) =
(1− β)Iλp(a, c)f(z) + βz

(
Iλp(a, c)f(z)

)′
(1− β + pβ)

(z ∈ U)

so that

1

p− α

{
z(Iλp(a, c)g)

′(z)

Iλp(a, c)g(z)
− α

}

=
1

p− α

{
z
(
Iλp(a, c)f(z)

)′
+ βz2

(
Iλp(a, c)f(z)

)′′
(1− β)Iλp(a, c)f(z) + βz

(
Iλp(a, c)f(z)

)′ − α

}
(z ∈ U).

Thus, with the aid of (1.11), if the function f ∈ Vλ
p,β(a, c, α,A,B), then

g ∈ Vλ
p,0(a, c, α,A,B).

In the present paper, by using the techniques of differential subordination, we
establish some inclusion relationships involving the class Vλ

p,β(a, c, α,A,B) and also
obtain certain subordination results for certain classes of functions in Ap involving
the operator Iλp(a, c). Some interesting corollaries are derived and the relevance of
our work with the earlier known results are pointed out.

To establish our results, we shall need the following lemmas.
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Lemma 1.1.(Miller and Mocanu [13],[15]) If −1 ≤ B < A ≤ 1, β∗ > 0, and the
complex number γ∗ is constrained by Re(γ∗) ≥ −{β∗(1 − A)}/(1 − B), then the
following differential equation:

q(z) +
zq′(z)

β∗q(z) + γ∗
=

1 +Az

1 +Bz
(z ∈ U)

has a univalent solution in U, given by

(1.12) q(z) =



zβ
∗+γ∗

(1 +Bz)β
∗(A−B)/B

β∗
∫ z

0

tβ
∗+γ∗−1(1 +Bt)β

∗(A−B)/B dt

− γ∗

β∗ , B ̸= 0

zβ
∗+γ∗

exp(β∗Az)

β∗
∫ z

0

tβ
∗+γ∗−1 exp(β∗At) dt

− γ∗

β∗ , B = 0.

If the function ϕ, given by

(1.13) ϕ(z) = 1 + c1z + c2z
2 + · · · (z ∈ U)

satisfies the following subordination relation:

(1.14) ϕ(z) +
zϕ′(z)

β∗ϕ(z) + γ∗
≺ 1 +Az

1 +Bz
(z ∈ U),

then

ϕ(z) ≺ q(z) ≺ 1 +Az

1 +Bz
(z ∈ U)

and the function q is the best dominant of (1.14).

Lemma 1.2.(Wilken and Feng [25]) Let ν be a positive measure on [0, 1]. Let h(z, t)
be a complex-valued function defined on U × [0, 1] such that h(·, t) is analytic in U
for each t ∈ [0, 1] and h(z, ·) is ν-integrable on [0, 1] for all z ∈ U. In addition,
suppose that Re{h(z, t)} > 0, h(−r, t) is real and

Re

(
1

h(z, t)

)
≥ 1

h(−r, t)
for |z| ≤ r < 1 and t ∈ [0, 1].

If the function H is defined by H(z) =
∫ 1

0
h(z, t)dν(t) (z ∈ U), then

Re

(
1

H(z)

)
≥ 1

H(−r)
.

For real or complex numbers a1, a2, b1 (b1 /∈ Z−
0 ), the Gauss Hypergeometric

function 2F1 is defined by

2F1(a1, a2; b1; z) = 1 +
a1a2
b1

z

1!
+
a1(a1 + 1)a2(a2 + 1)

b1(b1 + 1)

z2

2!
+ · · · .
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We note that the function 2F1 represented by the above series converges absolutely
for z ∈ U and hence represents an analytic function in U (see, for details, [26,
Chapter 14]).

The following identities (asserted by Lemma 1.3 are well-known (cf., e.g., [26,
Chapter 14]).

Lemma 1.3. For real or complex numbers a1, a2, b1 (b1 /∈ Z−
0 ), we have∫ 1

0

ta2−1(1− t)b1−a2−1(1− tz)−a1 dt =
Γ(a2)Γ(b1 − a2)

Γ(b1)
2F1(a1, a2; b1; z);(1.15)

(Re(b1) > Re(a2) > 0)

2F1(a1, a2; b1; z) = (1− z)−a1
2F1

(
a1, b1 − a2; b1;

z

z − 1

)
;(1.16)

2F1(a1, a2; b1; z) =2 F1(a2, a1; b1; z)(1.17)

(a2 + 1) 2F1(1, a2; a2 + 1; z) = (a2 + 1) + a2z 2F1(1, a2 + 1; a2 + 2; z);(1.18)

Lemma 1.4.([21]) Let β̃ ∈ C and γ̃ ∈ C∗. Let q be a convex univalent function in
U such that

Re

(
1 +

zq′′(z)

q′(z)

)
> max

{
0,−Re

(
β̃

γ̃

)}
.

If ϕ is analytic in U with ϕ(0) = q(0) and

β̃ϕ(z) + γ̃zϕ′(z) ≺ β̃q(z) + γ̃zq′(z) (z ∈ U),

then

(1.19) ϕ(z) ≺ q(z) (z ∈ U)

and the function q is the best dominant of (1.19).

Lemma 1.5.([14]) Let q be univalent in U, and let θ and ϕ be analytic in a domain
Ω containing q(U) with ϕ(w) ̸= 0 for w ∈ q(U). Set Q(z) = zq′(z)ϕ(q(z)) and
h(z) = θ(q(z)) +Q(z). Suppose that

(i) Q is univalent starlike in U,

(ii) Re

{
zh′(z)

Q(z)

}
= Re

{
θ′(q(z))

ϕ(q(z))
+
zQ′(z)

Q(z)

}
> 0 (z ∈ U).

If g is analytic in U with g(0) = q(0), g(U) ⊆ Ω and

θ(g(z)) + zg′(z)ϕ(g(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)) (z ∈ U),

then

(1.20) g(z) ≺ q(z) (z ∈ U)

and the function q is the best dominant of (1.20).
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2. Inclusion Relationships for the Function Class Vλ
p,β(a, c, α,A,B)

Unless otherwise mentioned, we assume throughout the sequel that

a > 0, c > 0, 0 ≤ α < p, λ > −p, 0 ≤ β ≤ 1,−1 ≤ B < A ≤ 1,

and the powers appearing in some expressions are principal ones.

Theorem 2.1. If f ∈ Vλ
p,β(a, c, α,A,B) and

(2.1) a(1−B)− (p− α)(A−B) ≥ 0,

then

1

p− α

{
z
(
Iλp(a+ 1, c)f(z)

)′
+ βz2

(
Iλp(a+ 1, c)f(z)

)′′
(1− β)Iλp(a+ 1, c)f(z) + βz

(
Iλp(a+ 1, c)f(z)

)′ − α

}
(2.2)

≺ 1

p− α

{
1

Q(z)
− (a+ α− p)

}
= q(z) ≺ 1 +Az

1 +Bz
(z ∈ U),

where

(2.3) Q(z) =


∫ z

0

ta−1

(
1 +Bzt

1 +Bz

)(p−α)(A−B)/B

dt, B ̸= 0∫ z

0

ta−1 exp ((p− α)Az(t− 1)) dt, B = 0,

and the function q is the best dominant of (2.2). If, in addition to (2.1),

A ≤ − (a+ α+ 1− p)B

p− α
with − 1 ≤ B < 0,

then

(2.4) Vλ
p,β(a, c, α,A,B) ⊂ Vλ

p,β(a+ 1, c, α, 1− 2κ,−1),

where

κ =
1

p− α

[
a

{
2F1

(
1,

(p− α)(B −A)

B
; a+ 1;

B

B − 1

)}−1

− (a+ α− p)

]
.

The inclusion relationship in (2.4) is the best possible.

Proof. Let f ∈ Vλ
p,β(a, c, α,A,B). Setting

(2.5) g(z) = z

(
(1− β)Iλp(a+ 1, c)f(z) + βz

(
Iλp(a+ 1, c)f(z)

)′
(1− β + pβ)zp

)1/(p−α)
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and r̃ = sup{r : g(z) ̸= 0, 0 < |z| < r < 1}, we see that g is single-valued and
analytic in |z| < r̃. Differentiating (2.5) logarithmically and using the identity (1.9)
in the resulting equation, it follows that the function

ϕ(z) =
zg′(z)

g(z)
(2.6)

=
1

p− α

(
z
(
Iλp(a+ 1, c)f(z)

)′
+ βz2

(
Iλp(a+ 1, c)f(z)

)′′
(1− β)Iλp(a+ 1, c)f(z) + βz

(
Iλp(a+ 1, c)f(z)

)′ − α

)
is of the form (1.13) and analytic in |z| < r̃. Again, by using the identity (1.9) in
(2.6) and carrying out the logarithmic differentiation in the resulting expression, we
deduce that

1

p− α

{
z
(
Iλp(a, c)f(z)

)′
+ βz2

(
Iλp(a, c)f(z)

)′′
(1− β)Iλp(a, c)f(z) + βz

(
Iλp(a, c)f(z)

)′ − α

}
(2.7)

= ϕ(z) +
zϕ′(z)

(p− α)ϕ(z) + (a+ α− p)
≺ 1 +Az

1 +Bz
(|z| < r̃).

Thus, an application of Lemma 1.1 yields

(2.8) ϕ(z) ≺ 1

p− α

{
1

Q(z)
− (a+ α− p)

}
= q(z) ≺ 1 +Az

1 +Bz
(|z| < r̃),

where q, given by (1.12) with β∗ = p− α and γ∗ = a+ α− p. is the best dominant
of (2.2).

For −1 ≤ B < A ≤ 1, we note that Re {(1 +Az)/(1 +Bz)} > 0, so that by
(2.8), we get Re(ϕ(z)) > 0 in |z| < r̃. Now, (2.6) shows that g is starlike in |z| < r̃.
Thus, it is not possible that g vanishes on |z| = r̃, if r̃ = 1. So, we must have r̃ = 1
and the function ϕ becomes analytic in U. Therefore, by (2.8)

ϕ(z) ≺ q(z) ≺ 1 +Az

1 +Bz
(z ∈ U),

provided p, α, a,A and B satisfy (2.1). This proves the assertion (2.2).
Next, we show that

(2.9) inf
z∈U

{Re(q(z))} = q(−1).

Letting

a1 =
(p− α)(B −A)

B
, a2 = a, and b1 = a+ 1,

we find that b1 > a2 > 0. From (2.3), by making use of (1.15),(1.16), (1.17) and
(1.18), we obtain for B ̸= 0,

Q(z) = (1 +Bz)a1

∫ z

0

ta2−1(1 +Bzt)−a1 dt(2.10)

=
Γ(a2)

Γ(b1)
2F1

(
1, a1; b1;

Bz

Bz + 1

)
.
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To prove (2.9), it suffices to show that

(2.11) Re

(
1

Q(z)

)
≥ 1

Q(−1)
(z ∈ U).

Since

A < − (a+ α+ 1− p)B

p− α
with − 1 ≤ B < 0,

we find that b1 > a1 > 0. Thus, by using (1.15), we deduce from (2.10) that

Q(z) =

∫ 1

0

h(z, t)dν(t),

where

h(z, t) =
1 +Bz

1 + (1− t)Bz
and dν(t) =

Γ(a2)

Γ(a1)Γ(b1)
ta1−1(1−t)b1−a1−1dt (0 ≤ t ≤ 1)

which is a positive measure on [0, 1]. Further, for −1 ≤ B < 0, it may be noted
that Re{h(z, t)} > 0, h(−r, t) is real for 0 < |z| ≤ r < 1 and 0 ≤ t ≤ 1. Therefore,
by Lemma 1.2, we obtain

Re

(
1

Q(z)

)
≥ 1

Q(−r)
(|z| ≤ r < 1),

which upon letting r → 1− yields (2.11).
For the case A = −{(a+ α+ 1− p)B}/(p− α), by taking

A→
(
− (a+ α+ 1− p)B

p− α

)+

and using (2.2), we get (2.4).
The inclusion relationship in (2.4) is the best possible as the function q is the

best dominant of (2.2). This completes the proof of Theorem 2.1. 2

Setting a = p, c = λ = A = 1 and B = −1 in Theorem 2.1, we get the
following result which gives the corresponding work of Patel et al. [18, Corollary 1]
for β = 0.

Corollary 2.1. If (p− 1)/2 ≤ α < p and f ∈ Ap satisfies

Re

{
1 +

(1 + β)zf ′′(z) + βz2f ′′′(z)

f ′(z) + βzf ′′(z)

}
> α (z ∈ U),

then f ∈ Vp,β(κ), where

(2.12) κ = p

{
2F1

(
1, 2(p− α); p+ 1;

1

2

)}−1
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and the result is the best possible.

For the choice β = 1, Corollary 2.1 yields

Corollary 2.2. If (p− 1)/2 ≤ α < p and f ∈ Ap satisfies

Re

{
1 +

z (2f ′′(z) + zf ′′′(z))

f ′(z) + zf ′′(z)

}
> α (z ∈ U),

then f ∈ Cp(κ), where κ is given by (2.12) and the result is the best possible.

Theorem 2.1 with a = δ + p, c = 1 and λ = δ yields the following results
obtained by Patel et al. [18, Theorem 2(Part (ii))].

Corollary 2.3 Suppose that 0 ≤ α < p,−1 ≤ B < 0 and

δ ≥ max

{
−p(1−A) + (A−B)α

1−B
,− (p− α)A

B
− α− 1

}
.

If f ∈ Vp,β(α;A,B), then Fδ,p(f) ∈ Vp,β(ϱ), where

ϱ = (δ + p)

{
2F1

(
1,

(p− α)(B −A)

B
; δ + p+ 1;

B

B − 1

)}−1

− δ

and Fδ,p is given by (1.10). The result is the best possible.

Corollary 2.3 with β = 0 (or β = 1, respectively) yields the following results
obtained by Patel et al. [18, Remark 2].

Corollary 2.4. For 0 ≤ α < p and δ ≥ max {−α, p− 2α− 1} , we have

Fδ,p

(
S∗p(α)

)
⊂ S∗p(ξ) and Fδ,p (Cp(α)) ⊂ Cp(ξ),

where

ξ = (δ + p)

{
2F1

(
1, 2(p− α); δ + p+ 1;

1

2

)}−1

− δ

and Fδ,p is given by (1.10). The results are the best possible.

Remark 2.1. (i) Theorem 2.1 improves the result due to Noor et al. [12, Theorem
1] for the function χ(z) = (1 +Az)/(1 +Bz), z ∈ U.

(ii) Substituting a = p−µ, c = p+1 and λ = 1−µ (−∞ < µ < p+1) in Theorem
2.1, we obtained the corresponding work of Patel and Mishra [17, Theorem 1].

3. Subordination Results

In this section, we derive certain results for functions in Ap involving the operator
Ip(a, c).

Theorem 3.1. Let γ, µ ∈ C∗ and q be univalent in U such that

(3.1) Re

{
1 +

zq′′(z)

q′(z)

}
> max

{
0,−aRe

(
γ

µ

)}
.
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If f ∈ Ap satisfies the subordination relation:

(1− µ)

(
Iλp(a+ 1, c)f(z)

zp

)γ

+ µ

(
Iλp(a+ 1, c)f(z)

zp

)γ
Iλp(a, c)f(z)

Iλp(a+ 1, c)f(z)
(3.2)

≺ q(z) +
µ

aγ
zq′(z) (z ∈ U),

then

(3.3)

(
Iλp(a+ 1, c)f(z)

zp

)γ

≺ q(z) (z ∈ U)

and the function q is the best dominant of (3.3).

Proof. Letting

(3.4) h(z) =

(
Iλp(a+ 1, c)f(z)

zp

)γ

(z ∈ U),

differentiating (3.4) logarithmically and using the identity (1.9) in the resulting
expression, we get

h(z) +
zh′(z)

aγ
=

Iλp(a, c)f(z)

Iλp(a+ 1, c)f(z)
(z ∈ U)

so that by using (3.4) again, the above equation yields

(3.5) h(z) +
µ

aγ
zh′(z) ≺ q(z) +

µ

aγ
zq′(z) (z ∈ U).

Thus, by applying Lemma 1.4 to the subordination condition (3.5) with β̃ = 1 and
γ̃ = µ/aγ, we get the the desired assertion (3.3). 2

Remark 3.1. If, we let q(z) = (1 + Az)/(1 + Bz) (−1 ≤ B < A ≤ 1; z ∈ U) in
Theorem 3.1, the condition (3.1) reduces to

(3.6) Re

(
1−Bz

1 +Bz

)
> max

{
0,−aRe

(
γ

µ

)}
(z ∈ U).

It is easy to verify that the function ψ(z) = (1 − Bz)/(1 + Bz) (z ∈ U) is con-
vex(univalent) in U. Since ψ(z) = ψ(z) for all z ∈ U, the image of U under the
function ψ is a convex domain and symmetrical with respect to the real axis. Thus,

inf

{
Re

(
1−Bz

1 +Bz

)
: z ∈ U

}
=

1− |B|
1 + |B|

> 0

from which, it follows that the inequality (3.6) is equivalent to

aRe

(
γ

µ

)
≥ |B| − 1

|B|+ 1
.
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Letting q(z) = (1 + Az)/(1 + Bz) in Theorem 3.1 and using the Remark 3.1,
we arrive at the following result.

Corollary 3.1. Let −1 ≤ B < A ≤ 1 and

1− |B|
1 + |B|

≥ max

{
0,−aRe

(
γ

µ

)}
.

If f ∈ Ap satisfies

(1− µ)

(
Iλp(a+ 1, c)f(z)

zp

)γ

+ µ

(
Iλp(a+ 1, c)f(z)

zp

)γ
Iλp(a, c)f(z)

Iλp(a+ 1, c)f(z)

≺ 1 +Az

1 +Bz
+

µ

aγ

(A−B)z

(1 +Bz)2
(z ∈ U),

then (
Iλp(a+ 1, c)f(z)

zp

)γ

≺ 1 +Az

1 +Bz
(z ∈ U)

and the function (1 +Az)/(1 +Bz) is the best dominant.
For the choices a = p, c = λ = γ = 1, A = 1− 2ρ and B = −1, Corollary 3.1

yields the following result.

Corollary 3.2. Let µ ∈ C∗ be such that Re(1/µ) ≥ 0. If f ∈ Ap satisfies the
following subordination relation:

(1− µ)
f(z)

zp
+
µ

p

f ′(z)

zp−1
≺ 1 + (1− 2ρ)z

1− z
+

2(1− ρ)µ z

p(1− z)2
(0 ≤ ρ < 1; z ∈ U),

then
f(z)

zp
≺ q̃(z) (z ∈ U),

where q̃, defined by

(3.7) q̃(z) =
1 + (1− 2ρ)z

1− z
(0 ≤ ρ < 1; z ∈ U)

is the best dominant.
Taking a = δ + p, c = γ = 1, λ = δ,A = 1− 2ρ and B = −1 in Corollary 3.1,

we obtain

Corollary 3.3. Let µ ∈ C∗ be such that Re(1/µ) ≥ 0. If f ∈ Ap satisfies the
following subordination relation:

(1− µ)
Fδ,p(f)(z)

zp
+ µ

f(z)

zp

≺ 1 + (1− 2ρ)z

1− z
+

2(1− ρ)µ z

(δ + p)(1− z)2
(0 ≤ ρ < 1, δ > −p; z ∈ U)

= g(z) (say),
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then
Fδ,p(f)(z)

zp
≺ q̃(z) (z ∈ U),

where Fδ,p is given by (1.10) and the function q̃, defined by (3.7) is the best domi-
nant.

Remark 3.2. We now investigate the image of the unit disk U under the function

g(z) =
1 + (1− 2ρ)z

1− z
+

2(1− ρ)µ z

(δ + p)(1− z)2
(0 ≤ ρ < 1, δ > −p; z ∈ U).

We note that g ∈ A, g(0) = 1 and g(−1) = ρ−{µ(1−ρ)}/{2(δ+p)}. The boundary
curve of the image g(U) is given by

g(eiθ) = u(eiθ) + iv(eiθ),−π < θ < π,

where

u(eiθ) = ρ+
µ(1− ρ)

(δ + p)(cos θ − 1)
and v(eiθ) = − (1− ρ) sin θ

cos θ − 1
.

Eliminating θ from the above equations, we get

(3.8) v2 = −2(p+ δ)(1− ρ)

µ

{
u−

(
ρ− µ(1− ρ)

2(δ + p)

)}
,

which represents a parabola opening towards the left with vertex at the point(
ρ− µ(1−ρ)

2(δ+p) , 0
)

and negative real axis as its axis. Thus, g(U) is the exterior of

the parabola given by (3.8) and it includes the right half plane

u > ρ− µ(1− ρ)

2(δ + p)
.

Theorem 3.2. Let µ ∈ C∗ and γ ∈ C. Let q be univalent in U with q(0) = 1,
q(z) ̸= 0 in U and satisfies

(3.9) Re

{
1 +

zq′′(z)

q′(z)
− zq′(z)

q(z)

}
> 0 (z ∈ U).

If f ∈ Ap satisfies

(3.10)
(1− β)Iλp(a, c)f(z) + βz

(
Iλp(a, c)f(z)

)′
(1− β + pβ)zp

̸= 0 (z ∈ U)

and

1 + µγ

{
z
(
Iλp(a, c)f(z)

)′
+ βz2

(
Iλp(a, c)f(z)

)′′
(1− β)Iλp(a, c)f(z) + βz

(
Iλp(a, c)f(z)

)′ − p

}
(3.11)

≺ 1 + γ
zq′(z)

q(z)
(z ∈ U),



Inclusion and Subordination Properties 1045

then

(3.12)

{
(1− β)Iλp(a, c)f(z) + βz

(
Iλp(a, c)f(z)

)′
(1− β + pβ)zp

}µ

≺ q(z) (z ∈ U)

and the function q is the best dominant of (3.12).

Proof. Consider the function h defined by

(3.13) h(z) =

{
(1− β)Iλp(a, c)f(z) + βz

(
Iλp(a, c)f(z)

)′
(1− β + pβ)zp

}µ

(z ∈ U).

In view of (3.10), the function h is analytic in U and h(0) = 1. Differentiating both
the sides of (3.13) logarithmically followed by the use of the identity (1.9) in the
resulting expression, we get

(3.14)
zh′(z)

h(z)
= µ

{
z
(
Iλp(a, c)f(z)

)′
+ βz2

(
Iλp(a, c)f(z)

)′′
(1− β)Iλp(a, c)f(z) + βz

(
Iλp(a, c)f(z)

)′ − p

}
(z ∈ U).

By setting

θ(w) = 1 (w ∈ C) and ϕ(w) =
γ

w
(w ∈ C∗),

it is easily observed that θ is analytic in C and ϕ(w) ̸= 0 in C∗. Further, if we let

Q(z) = zq′(z)ϕ(q(z)) = γ
zq′(z)

q(z)
and g(z) = θ(q(z)) +Q(z) = 1 + γ

zq′(z)

q(z)
,

then by (3.9), the function Q is univalent starlike in U. Also, by (3.9)

Re

{
zg′(z)

Q(z)

}
= Re

{
1 +

zq′′(z)

q′(z)
− zq′(z)

q(z)

}
> 0 (z ∈ U).

Using (3.14) in (3.11), we get

1 + γ
zh′(z)

h(z)
≺ 1 + γ

zq′(z)

q(z)
(z ∈ U),

which is equivalent to

θ(h(z)) + zh′(z)ϕ(h(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)) (z ∈ U).

Thus, by making use of Lemma 1.5, we have

h(z) ≺ q(z) (z ∈ U)

and the function q is the best dominant. This completes the proof of Theorem 3.2.
2



1046 J. Patel and A. Ku. Sahoo

Letting a = p+1, c = λ = γ = 1 and q(z) = (1+Az)/(1+Bz) in Theorem 3.2,
we obtain the following result.

Corollary 3.4. Let µ ∈ C∗. If f ∈ Ap satisfies {(1− β)f(z) + βzf ′(z)}/zp ̸= 0 in
U and

1 + µ

{
zf ′(z) + βz2f ′′(z)

(1− β)f(z) + βzf ′(z)
− p

}
≺ 1 +

(A−B)z

(1 +Az)(1 +Bz)
(z ∈ U),

then {
(1− β)f(z) + βzf ′(z)

zp

}µ

≺ (1− β + pβ)µ
1 +Az

1 +Bz
(z ∈ U)

and the function (1 +Az)/(1 +Bz) is the best dominant.
Using the fact that (cf., e.g., [19]) the function

q(z) = (1− z)−2(1−ρ)µ b (b, µ ∈ C∗, 0 ≤ ρ < 1; z ∈ U)

is univalent in U, if and only if either |2(1 − ρ)µb − 1| ≤ 1 or |2(1 − ρ)µb + 1| ≤ 1,
taking q defined as above and putting a = p + 1, c = λ = 1, γ = 1/µ b in Theorem
3.2, we get the following result which reduces to the corresponding work of Aouf et
al. [1, Corollary 6] for β = ρ = 0.

Corollary 3.5. Let µ, b ∈ C∗ be such that either

|2(1− ρ)µb− 1| ≤ 1 or |2(1− ρ)µb+ 1| ≤ 1 (0 ≤ ρ < 1).

If f ∈ Ap satisfies {(1− β)f(z) + βzf ′(z)}/zp ̸= 0 in U and

1 +
1

b

{
zf ′(z) + βz2f ′′(z)

(1− β)f(z) + βzf ′(z)
− p

}
≺ 1 + (1− 2ρ)z

1− z
(0 ≤ ρ < 1; z ∈ U),

then {
(1− β)f(z) + βzf ′(z)

zp

}µ

≺ (1− β + pβ)µ

(1− z)2µb(1−ρ)
(z ∈ U)

and the function 1/(1− z)2µb(1−ρ) is the best dominant.
Putting β = 0 (or β = 1, respectively) in Corollary 3.5, we get the following

result obtained by Srivastava and Lashin [23] (also see [7, Corollary 3.8]) for µ =
p = 1 and ρ = 0.

Corollary 3.6. Let µ, b ∈ C∗ be such that either

|2(1− ρ)µb− 1| ≤ 1 or |2(1− ρ)µb+ 1| ≤ 1.

Then

f ∈ S∗p(b; ρ) =⇒
{
f(z)

zp

}µ

≺ 1

(1− z)2µb(1−ρ)
(0 ≤ ρ < 1; z ∈ U),
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and

f ∈ Cp(b; ρ) =⇒
{
f ′(z)

zp−1

}µ

≺ pµ

(1− z)2µb(1−ρ)
(0 ≤ ρ < 1; z ∈ U)

and the function 1/(1− z)2µb(1−ρ) is the best dominant for both the results.
For a = p+ 1, c = λ = γ = 1 and q(z) = (1 + Bz)µ(A−B)/B (µ ∈ C∗, B ̸= 0) in

Theorem 3.2, we obtain the following result which, in turn yields the work of Aouf
et al. [1, Corollary 7] for β = 0.

Corollary 3.7. Let µ ∈ C∗ and B ̸= 0 be such that either∣∣∣∣µ(A−B)

B
− 1

∣∣∣∣ ≤ 1 or

∣∣∣∣µ(A−B)

B
+ 1

∣∣∣∣ ≤ 1.

If f ∈ Ap satisfies {(1− β)f(z) + βzf ′(z)}/zp ̸= 0 in U and

1 + µ

{
zf ′(z) + βz2f ′′(z)

(1− β)f(z) + βzf ′(z)
− p

}
≺ 1 + {B + µ(A−B)}z

1 +Bz
(z ∈ U),

then {
(1− β)f(z) + βzf ′(z)

zp

}µ

≺ (1 +Bz)
µ(A−B)

B (z ∈ U)

and the function (1 +Bz)µ(A−B)/B is the best dominant.

Theorem 3.3. Let µ ∈ C∗ and η ∈ C. Let q be a univalent function in U with
q(0) = 1 and

(3.15) Re

{
1 +

zq′′(z)

q′(z)

}
> max{0,−Re(η)} (z ∈ U).

If f ∈ Ap satisfies (3.10) and

(3.16) Ψ(z) ≺ ηq(z) + γ zq′(z) (z ∈ U),

where

Ψ(z) =

{
(1− β)Iλp(a, c)f(z) + βz(Iλp(a, c)f(z))

′

(1− β + pβ)zp

}µ

×(3.17) {
η + µγ

(
z
(
Iλp(a, c)f(z)

)′
+ βz2

(
Iλp(a, c)f(z)

)′′
(1− β)Iλp(a, c)f(z) + βz

(
Iλp(a, c)f(z)

)′ − p

)}
(z ∈ U),

then

(3.18)

{
(1− β)Iλp(a, c)f(z) + βz(Iλp(a, c)f(z))

′

(1− β + pβ)zp

}µ

≺ q(z) (z ∈ U)

and the function q is the best dominant of (3.18).
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Proof. The proof of this theorem being much similar to that of Theorem 3.2, we
give the main steps only. We consider the function h, given by (3.13). Then by
(3.14), we have

(3.19) zh′(z) = µh(z)

{
z
(
Iλp(a, c)f(z)

)′
+ βz2

(
Iλp(a, c)f(z)

)′′
(1− β)Iλp(a, c)f(z) + βz

(
Iλp(a, c)f(z)

)′ − p

}
(z ∈ U).

Taking θ(w) = ηw, ϕ(w) = γ (w ∈ C), Q(z) = zq′(z)ϕ(q(z)) = γzq′(z) and

g(z) = θ(q(z)) +Q(z) = ηq(z) + γzq′(z),

we find from (3.15) that Q is univalent starlike in U. Also, by the hypothesis (3.15)

Re

{
zg′(z)

Q(z)

}
= Re

{
η + 1 +

zq′′(z)

q′(z)

}
> 0 (z ∈ U).

Furthermore, by substituting the expression for h from (3.13) and zh′(z) from (3.19),
we have

θ(h(z)) + zh′(z)ϕ(h(z)) = ηh(z) + γzh′(z) = Ψ(z) (z ∈ U).

Thus, the hypothesis (3.16) reduces to

θ(h(z)) + zh′(z)ϕ(h(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)) (z ∈ U)

and an application of Lemma 1.5 gives the required assertion, This completes the
proof of Theorem 3.3. 2

Noting that

Re

{
1 +

zq′′(z)

q′(z)

}
= Re

{
1−Bz

1 +Bz

}
>

1− |B|
1 + |B|

(z ∈ U)

and taking β = 0, γ = 1, q(z) = (1 +Az)/(1 +Bz) in Theorem 3.3, we have

Corollary 3.8. Let µ ∈ C∗ and η = (|B| − 1)/(|B| + 1). If f ∈ Ap satisfies
Iλp(a, c)f(z)/z

p ̸= 0 in U and{
Iλp(a, c)f(z)

zp

}µ{
η + µ

(
z
(
Iλp(a, c)f(z)

)′
Iλp(a, c)f(z)

− p

)}

≺ η(1 +Az)

1 +Bz
+

(A−B)z

(1 +Bz)2
(z ∈ U),

then {
Iλp(a, c)f(z)

zp

}µ

≺ 1 +Az

1 +Bz
(z ∈ U)
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and the function (1 +Az)/(1 +Bz) is the best dominant.
In the special case when λ = c = 1, A = 1 − 2ρ,B = −1 (so that η =

0) and a = p + 1 (or a = p, respectively), Corollary 3.8 gives the following
result.

Corollary 3.9. Let µ ∈ C∗, 0 ≤ ρ < 1 and f ∈ Ap. If

(i)

{
f(z)

zp

}µ{
zf ′(z)

f(z)
− p

}
≺ 2(1− ρ)z

(1− z)2
(z ∈ U), then

{
f(z)

zp

}µ

≺ 1 + (1− 2ρ)z

1− z
(z ∈ U)

and

(ii)

{
f ′(z)

pzp−1

}µ{
zf ′′(z)

f ′(z)
− (p− 1)

}
≺ 2(1− ρ)z

(1− z)2
(z ∈ U), then

{
f ′(z)

pzp−1

}µ

≺ 1 + (1− 2ρ)z

1− z
(z ∈ U).

The function {1 + (1− 2ρ)z}/(1− z) is the best dominant for both the results.

Remark 3.3. The results of Section 3 can be extended for the special cases of the
operator Iλp(a, c)(as discussed in the introduction) by suitably choosing the param-
eters involved.
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