On some Bounds for the Parameter λ in Steffensen's Inequality

Josip Pečarić and Ksenija Smoljak Kalamir*
Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
e-mail: pecaric@element.hr and ksmoljak@ttf.hr
Abstract. The object is to obtain weaker conditions for the parameter λ in Steffensen's inequality and its generalizations and refinements additionally assuming nonnegativity of the function f. Furthermore, we contribute to the investigation of the Bellman-type inequalites establishing better bounds for the parameter λ.

1. Introduction

The well-known Steffensen inequality reads (see [11]):
Theorem 1.1. Suppose that f is nonincreasing and g is integrable on $[a, b]$ with $0 \leq g \leq 1$ and $\lambda=\int_{a}^{b} g(t) d t$. Then we have

$$
\begin{equation*}
\int_{b-\lambda}^{b} f(t) d t \leq \int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} f(t) d t \tag{1.1}
\end{equation*}
$$

The inequalities are reversed for f nondecreasing.
Inequality (1.1) has triggered a huge amount of interest over the years (for a comprehensive survey see [10]). Futher, some newer works on this subject include extension of Steffensen's inequality and its generalizations to the class of convex functions (see [7, 8, 9]). We recall the following generalization obtained by Pečarić in [5].
Theorem 1.2. Let h be a positive integrable function on $[a, b]$ and f be an integrable function such that f / h is nondecreasing on $[a, b]$. Let g be an integrable function on

[^0]$[a, b]$ with $0 \leq g \leq 1$. Then
\[

$$
\begin{equation*}
\int_{a}^{b} f(t) g(t) d t \geq \int_{a}^{a+\lambda} f(t) d t \tag{1.2}
\end{equation*}
$$

\]

holds, where λ is the solution of the equation

$$
\begin{equation*}
\int_{a}^{a+\lambda} h(t) d t=\int_{a}^{b} h(t) g(t) d t . \tag{1.3}
\end{equation*}
$$

If f / h is a nonincreasing function, then the reverse inequality in (1.2) holds.

By substitutions $g \rightarrow 1-g$ and $\lambda \rightarrow b-a-\lambda$ previous theorem becomes:
Theorem 1.3. Let h be a positive integrable function on $[a, b]$ and f be an integrable function such that f / h is nondecreasing on $[a, b]$. Let g be an integrable function on $[a, b]$ with $0 \leq g \leq 1$. Then

$$
\begin{equation*}
\int_{a}^{b} f(t) g(t) d t \leq \int_{b-\lambda}^{b} f(t) d t \tag{1.4}
\end{equation*}
$$

holds, where λ is the solution of the equation

$$
\begin{equation*}
\int_{b-\lambda}^{b} h(t) d t=\int_{a}^{b} h(t) g(t) d t \tag{1.5}
\end{equation*}
$$

If f / h is a nonincreasing function, then the reverse inequality in (1.4) holds.
In 1959 Bellman gave an L^{p} generalization of Steffensen's inequality (see [1]). As noted by many mathematicians Bellman's result is incorrect as stated. A comprehensive survey of corrected versions and generalizations of Bellman's result can be found in [10]. In the following theorem we recall generalization of Bellman's result obtained by Pachpatte in [4].
Theorem 1.4. Let f, g, h be real-valued integrable functions defined on $[0,1]$ such that $f(t) \geq 0, h(t) \geq 0, t \in[0,1], f / h$ is nonincreasing on $[0,1]$ and $0 \leq g \leq A$, where A is a real positive constant. If $p \geq 1$, then

$$
\begin{equation*}
\left(\int_{0}^{1} g(t) f(t) d t\right)^{p} \leq A^{p} \int_{0}^{\lambda} f^{p}(t) d t \tag{1.6}
\end{equation*}
$$

where λ is the solution of the equation

$$
\int_{0}^{\lambda} h^{p}(t) d t=\frac{1}{A^{p}}\left(\int_{0}^{1} h^{p}(t) g(t) d t\right)\left(\int_{0}^{1} g(t) d t\right)^{p-1}
$$

In the main part of this paper we obtain weaker conditions for the parameter λ in the aforementioned generalizations of Steffensen's inequality additionally assuming that the function f is nonnegative. As a consequence we obtain weaker condition for the parameter λ in Steffensen's inequality. Moreover, we obtain better estimation for the parameter λ in Pachpatte's result. We conclude the paper with better estimations for the parameter λ in generalizations of Steffensen's inequality obtained by Mercer, Wu and Srivastava.

2. Main Results

In the following theorems we obtain weaker condition for the parameter λ in generalizations of Steffensen's inequality given in Theorems 1.2 and 1.3.
Theorem 2.1. Let h be a positive integrable function on $[a, b]$ and f be a nonnegative integrable function such that f / h is nonincreasing on $[a, b]$. Let g be an integrable function on $[a, b]$ with $0 \leq g \leq 1$. Then

$$
\begin{equation*}
\int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} f(t) d t \tag{2.1}
\end{equation*}
$$

holds, where λ is given by

$$
\begin{equation*}
\int_{a}^{a+\lambda} h(t) d t \geq \int_{a}^{b} h(t) g(t) d t \tag{2.2}
\end{equation*}
$$

If f / h is nondecreasing, then the reverse inequality in (2.1) holds, where λ is given by (2.2) with the reverse inequality.
Proof. Since f / h is nonincreasing transformation of the difference between the right-hand side and the left-hand side of inequality (2.1) gives

$$
\begin{aligned}
& \int_{a}^{a+\lambda} f(t) d t-\int_{a}^{b} f(t) g(t) d t=\int_{a}^{a+\lambda}(1-g(t)) f(t) d t-\int_{a+\lambda}^{b} f(t) g(t) d t \\
& \geq \frac{f(a+\lambda)}{h(a+\lambda)} \int_{a}^{a+\lambda} h(t)(1-g(t)) d t-\int_{a+\lambda}^{b} f(t) g(t) d t \\
& \geq \frac{f(a+\lambda)}{h(a+\lambda)}\left(\int_{a}^{b} h(t) g(t) d t-\int_{a}^{a+\lambda} h(t) g(t) d t\right)-\int_{a+\lambda}^{b} f(t) g(t) d t \\
& =\int_{a+\lambda}^{b} g(t) h(t)\left(\frac{f(a+\lambda)}{h(a+\lambda)}-\frac{f(t)}{h(t)}\right) d t \geq 0
\end{aligned}
$$

where we use (2.2) and nonnegativity of function f.
Theorem 2.2. Let h be a positive integrable function on $[a, b]$ and f be a nonnegative integrable function such that f / h is nonincreasing on $[a, b]$. Let g be an
integrable function on $[a, b]$ with $0 \leq g \leq 1$. Then

$$
\begin{equation*}
\int_{a}^{b} f(t) g(t) d t \geq \int_{b-\lambda}^{b} f(t) d t \tag{2.3}
\end{equation*}
$$

holds, where λ is given by

$$
\begin{equation*}
\int_{b-\lambda}^{b} h(t) d t \leq \int_{a}^{b} h(t) g(t) d t . \tag{2.4}
\end{equation*}
$$

If f / h is nondecreasing, then the reverse inequality in (2.3) holds, where λ is given by (2.4) with the reverse inequality.
Proof. Similar to the proof of Theorem 2.1.
Taking $h \equiv 1$ in Theorems 2.1 and 2.2 we obtain the following weaker conditions for the parameter λ in Steffensen's inequality.

Corollary 2.1. Let f be a nonnegative nonincreasing function on $[a, b]$ and g be an integrable function on $[a, b]$ with $0 \leq g \leq 1$. Then

$$
\begin{equation*}
\int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} f(t) d t \tag{2.5}
\end{equation*}
$$

holds, where

$$
\begin{equation*}
\lambda \geq \int_{a}^{b} g(t) d t \tag{2.6}
\end{equation*}
$$

If f is nondecreasing, then the reverse inequality in (2.5) holds, where λ is given by (2.6) with the reverse inequality.

Corollary 2.2. Let f be a nonnegative nonincreasing function on $[a, b]$ and g be an integrable function on $[a, b]$ with $0 \leq g \leq 1$. Then

$$
\begin{equation*}
\int_{a}^{b} f(t) g(t) d t \geq \int_{b-\lambda}^{b} f(t) d t \tag{2.7}
\end{equation*}
$$

holds, where

$$
\begin{equation*}
\lambda \leq \int_{a}^{b} g(t) d t \tag{2.8}
\end{equation*}
$$

If f is nondecreasing, then the reverse inequality in (2.7) holds, where λ is given by (2.8) with the reverse inequality.

In order to obtain Bellman-type inequality we need the following generalization of result given in Theorem 2.1.

Theorem 2.3. Let h be a positive integrable function on $[a, b]$ and f be a nonnegative integrable function such that f / h is nonincreasing on $[a, b]$. Let g be an integrable function on $[a, b]$ with $0 \leq g \leq 1$. If $p \geq 1$ then

$$
\begin{equation*}
\int_{a}^{b} f^{p}(t) g(t) d t \leq \int_{a}^{a+\lambda} f^{p}(t) d t \tag{2.9}
\end{equation*}
$$

holds, where λ is given by

$$
\begin{equation*}
\int_{a}^{a+\lambda} h^{p}(t) d t \geq \int_{a}^{b} h^{p}(t) g(t) d t \tag{2.10}
\end{equation*}
$$

If f / h is nondecreasing, then the reverse inequality in (2.9) holds, where λ is given by (2.10) with the reverse inequality.
Proof. Since f / h is nonincreasing, we have that f^{p} / h^{p} is nonincreasing. Hence, we can apply Theorem 2.1 to the function f^{p} / h^{p}.

Similarly, we have the following generalization of result given in Theorem 2.2.
Theorem 2.4. Let h be a positive integrable function on $[a, b]$ and f be a nonnegative integrable function such that f / h is nonincreasing on $[a, b]$. Let g be an integrable function on $[a, b]$ with $0 \leq g \leq 1$. If $p \geq 1$ then

$$
\begin{equation*}
\int_{a}^{b} f^{p}(t) g(t) d t \geq \int_{b-\lambda}^{b} f^{p}(t) d t \tag{2.11}
\end{equation*}
$$

holds, where λ is given by

$$
\begin{equation*}
\int_{b-\lambda}^{b} h^{p}(t) d t \geq \int_{a}^{b} h^{p}(t) g(t) d t \tag{2.12}
\end{equation*}
$$

If f / h is nondecreasing, then the reverse inequality in (2.11) holds, where λ is given by (2.12) with the reverse inequality.
Proof. Applying Theorem 2.2 to the function f^{p} / h^{p}.
We continue with the following Bellman-type inequality which allows us to obtain better estimation for the parameter λ in Pachpatte's result.

Theorem 2.5. Let h be a positive integrable function on $[a, b]$ and f be a nonnegative integrable function such that f / h is nonincreasing on $[a, b]$. Let g be an integrable function on $[a, b]$ with $0 \leq g \leq 1$. If $p \geq 1$ then

$$
\begin{equation*}
\frac{1}{(b-a)^{p-1}}\left(\int_{a}^{b} f(t) g(t) d t\right)^{p} \leq \int_{a}^{a+\lambda} f^{p}(t) d t \tag{2.13}
\end{equation*}
$$

holds, where λ is given by (2.10).

Proof. Using the Jensen inequality for convex function $\Phi(x)=x^{p}(p \geq 1)$, we have

$$
\begin{equation*}
\left(\int_{a}^{b} f(t) g(t) d t\right)^{p} \leq\left(\int_{a}^{b} g(t) d t\right)^{p-1} \int_{a}^{b} f^{p}(t) g(t) d t \tag{2.14}
\end{equation*}
$$

Since $0 \leq g \leq 1$ we have

$$
\begin{equation*}
\left(\int_{a}^{b} g(t) d t\right)^{p-1} \int_{a}^{b} f^{p}(t) g(t) d t \leq(b-a)^{p-1} \int_{a}^{b} f^{p}(t) g(t) d t \tag{2.15}
\end{equation*}
$$

Combining (2.14) and (2.15), and using (2.9) we obtain

$$
\frac{1}{(b-a)^{p-1}}\left(\int_{a}^{b} f(t) g(t) d t\right)^{p} \leq \int_{a}^{b} f^{p}(t) g(t) d t \leq \int_{a}^{a+\lambda} f^{p}(t) d t
$$

Taking $[a, b]=[0,1]$ in Theorem 2.5 we obtain the following corollary.
Corollary 2.3. Let h be a positive integrable function on $[0,1]$ and f be a nonnegative integrable function such that f / h is nonincreasing on $[0,1]$. Let g be an integrable function on $[0,1]$ with $0 \leq g \leq 1$. If $p \geq 1$ then

$$
\begin{equation*}
\left(\int_{0}^{1} f(t) g(t) d t\right)^{p} \leq \int_{0}^{\lambda} f^{p}(t) d t \tag{2.16}
\end{equation*}
$$

holds, where λ is given by

$$
\begin{equation*}
\int_{0}^{\lambda} h^{p}(t) d t \geq \int_{0}^{1} h^{p}(t) g(t) d t \tag{2.17}
\end{equation*}
$$

Taking $A=1$ in Theorem 1.4 we obtain the following corollary.
Corollary 2.4. Let f, g, h be real-valued integrable functions defined on $[0,1]$ such that $f(t) \geq 0, h(t) \geq 0, t \in[0,1], f / h$ is nonincreasing on $[0,1]$ and $0 \leq g(t) \leq 1$, $t \in[0,1]$. If $p \geq 1$, then (2.16) holds, where λ is the solution of the equation

$$
\int_{0}^{\lambda} h^{p}(t) d t=\left(\int_{0}^{1} h^{p}(t) g(t) d t\right)\left(\int_{0}^{1} g(t) d t\right)^{p-1}
$$

Remark 2.1. Since $0 \leq g \leq 1$ from (2.17) we have the following

$$
\begin{equation*}
\int_{0}^{\lambda} h^{p}(t) d t \geq \int_{0}^{1} h^{p}(t) g(t) d t \geq\left(\int_{0}^{1} g(t) d t\right)^{p-1} \int_{0}^{1} h^{p}(t) g(t) d t . \tag{2.18}
\end{equation*}
$$

Hence, the estimation for λ in Corollary 2.3 is better then the one in Pachpatte's result for the case $A=1$ given in Corollary 2.4.

3. Weaker Conditions for Mercer's and Wu-Srivastava Generalizations

In [3] Mercer proved the following generalization of Steffensen's inequality.
Theorem 3.1. Let f, g and h be integrable functions on (a, b) with f nonincreasing and $0 \leq g \leq h$. Then

$$
\begin{equation*}
\int_{b-\lambda}^{b} f(t) h(t) d t \leq \int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} f(t) h(t) d t \tag{3.1}
\end{equation*}
$$

where λ is given by

$$
\begin{equation*}
\int_{a}^{a+\lambda} h(t) d t=\int_{a}^{b} g(t) d t . \tag{3.2}
\end{equation*}
$$

Wu and Srivastava in [12] and Liu in [2] noted that the generalization due to Mercer is incorrect as stated. They have proved that it is true if we add the condition:

$$
\begin{equation*}
\int_{b-\lambda}^{b} h(t) d t=\int_{a}^{b} g(t) d t \tag{3.3}
\end{equation*}
$$

Pečarić, Perušić and Smoljak in [6] proved that the corrected version of Mercer's results follows from Theorems 1.2 and 1.3. In the following theorem we obtain weaker conditions for the parameter λ in the corrected version of Mercer's results which follows from Theorems 2.1 and 2.2.

Theorem 3.2. Let h be a positive integrable function on $[a, b]$ and f be a nonnegative nonincreasing function on $[a, b]$. Let g be an integrable function on $[a, b]$ with $0 \leq g \leq h$.
a) Then

$$
\int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} f(t) h(t) d t
$$

holds, where λ is given by

$$
\int_{a}^{a+\lambda} h(t) d t \geq \int_{a}^{b} g(t) d t
$$

b) Then

$$
\int_{b-\lambda}^{b} f(t) h(t) d t \leq \int_{a}^{b} f(t) g(t) d t
$$

where λ is given by

$$
\int_{b-\lambda}^{b} h(t) d t \leq \int_{a}^{b} g(t) d t
$$

Proof. Using substitutions $g \mapsto g / h$ and $f \mapsto f h$ in Theorems 2.1 and 2.2 we obtain the statements of this theorem.

In [3] Mercer also gave the following theorem. As showed by Pečarić, Perušić and Smoljak in [6] this theorem is equivalent to Theorem 1.2.
Theorem 3.3. Let f, g, h and k be integrable functions on (a, b) with $k>0, f / k$ nonincreasing and $0 \leq g \leq h$. Then

$$
\int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} f(t) h(t) d t
$$

where λ is given by

$$
\begin{equation*}
\int_{a}^{a+\lambda} h(t) k(t) d t=\int_{a}^{b} g(t) k(t) d t \tag{3.4}
\end{equation*}
$$

In the following theorem we relax condition (3.4) for the above Mercer's result and the corresponding condition for result equivalent to Theorem 1.3.

Theorem 3.4. Let k be a positive integrable function on $[a, b]$ and f be a nonnegative integrable function such that f / k is nonincreasing on $[a, b]$. Let g, h be integrable functions on $[a, b]$ with $0 \leq g \leq h$.
a) Then

$$
\int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} f(t) h(t) d t
$$

holds, where λ is given by

$$
\int_{a}^{a+\lambda} h(t) k(t) d t \geq \int_{a}^{b} g(t) k(t) d t .
$$

b) Then

$$
\int_{b-\lambda}^{b} f(t) h(t) d t \leq \int_{a}^{b} f(t) g(t) d t
$$

where λ is given by

$$
\int_{b-\lambda}^{b} h(t) k(t) d t \leq \int_{a}^{b} g(t) k(t) d t
$$

Proof. Using substitutions $h \mapsto k h, g \mapsto g / h$ and $f \mapsto f h$ in Theorems 2.1 and 2.2 we obtain the statements of this theorem.

Next, we recall the corrected and refined version of Mercer's result given by Wu and Srivastava in [12].

Theorem 3.5. Let f, g and h be integrable functions on $[a, b]$ with f nonincreasing and let $0 \leq g \leq h$. Then the following integral inequalities hold true

$$
\begin{aligned}
\int_{b-\lambda}^{b} f(t) h(t) d t & \leq \int_{b-\lambda}^{b}(f(t) h(t)-[f(t)-f(b-\lambda)][h(t)-g(t)]) d t \\
& \leq \int_{a}^{b} f(t) g(t) d t \\
& \leq \int_{a}^{a+\lambda}(f(t) h(t)-[f(t)-f(a+\lambda)][h(t)-g(t)]) d t \\
& \leq \int_{a}^{a+\lambda} f(t) h(t) d t
\end{aligned}
$$

where λ is given by

$$
\begin{equation*}
\int_{a}^{a+\lambda} h(t) d t=\int_{a}^{b} g(t) d t=\int_{b-\lambda}^{b} h(t) d t . \tag{3.5}
\end{equation*}
$$

In the following theorem we relax condition (3.5) by separating the above result into two parts and assuming nonnegativity of the function f.
Theorem 3.6. Let h be a positive integrable function on $[a, b]$ and f be a nonnegative nonincreasing function on $[a, b]$. Let g be an integrable function on $[a, b]$ with $0 \leq g \leq h$.
a) Then

$$
\begin{aligned}
\int_{a}^{b} f(t) g(t) d t & \leq \int_{a}^{a+\lambda}(f(t) h(t)-[f(t)-f(a+\lambda)][h(t)-g(t)]) d t \\
& \leq \int_{a}^{a+\lambda} f(t) h(t) d t
\end{aligned}
$$

holds, where λ is given by

$$
\int_{a}^{a+\lambda} h(t) d t \geq \int_{a}^{b} g(t) d t
$$

b) Then

$$
\begin{aligned}
\int_{b-\lambda}^{b} f(t) h(t) d t & \leq \int_{b-\lambda}^{b}(f(t) h(t)-[f(t)-f(b-\lambda)][h(t)-g(t)]) d t \\
& \leq \int_{a}^{b} f(t) g(t) d t
\end{aligned}
$$

holds, where λ is given by

$$
\int_{b-\lambda}^{b} h(t) d t \leq \int_{a}^{b} g(t) d t .
$$

Proof. The proof is based on the following inequalities:

$$
\begin{align*}
\int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} & (f(t) h(t)-[f(t)-f(a+\lambda)][h(t)-g(t)]) d t \tag{3.6}\\
& +\int_{a+\lambda}^{b}[f(t)-f(a+\lambda)] g(t) d t
\end{align*}
$$

and

$$
\begin{align*}
\int_{a}^{b} f(t) g(t) d t \geq \int_{b-\lambda}^{b} & (f(t) h(t)-[f(t)-f(b-\lambda)][h(t)-g(t)]) d t \tag{3.7}\\
& +\int_{a}^{b-\lambda}[f(t)-f(b-\lambda)] g(t) d t
\end{align*}
$$

Let us prove the first one. Transformation of the right-hand side of (3.6) gives the following
$\int_{a}^{a+\lambda}(f(t) h(t)-[f(t)-f(a+\lambda)][h(t)-g(t)]) d t+\int_{a+\lambda}^{b}[f(t)-f(a+\lambda)] g(t) d t$
$=\int_{a}^{a+\lambda} f(t) g(t) d t+f(a+\lambda) \int_{a}^{a+\lambda}(h(t)-g(t)) d t+\int_{a+\lambda}^{b} f(t) g(t) d t-f(a+\lambda) \int_{a+\lambda}^{b} g(t) d t$
$=\int_{a}^{b} f(t) g(t) d t+f(a+\lambda)\left[\int_{a}^{a+\lambda}(h(t)-g(t)) d t-\int_{a+\lambda}^{b} g(t) d t\right]$
$=\int_{a}^{b} f(t) g(t) d t+f(a+\lambda)\left[\int_{a}^{a+\lambda} h(t) d t-\int_{a}^{b} g(t) d t\right]$
$\geq \int_{a}^{b} f(t) g(t) d t+f(a+\lambda)\left[\int_{a}^{b} g(t) d t-\int_{a}^{b} g(t) d t\right]$
$=\int_{a}^{b} f(t) g(t) d t$
where in the inequality we use nonnegativity of f and a definition of λ, i.e. $\int_{a}^{a+\lambda} h(t) d t \geq \int_{a}^{b} g(t) d t$.

Inequality (3.7) can be proved in a similar manner.
Since f is nonincreasing on $[a, b]$ we get $f(t) \geq f(a+\lambda)$ for all $t \in[a, a+\lambda]$ and $f(t) \leq f(a+\lambda)$ for all $t \in[a+\lambda, b]$. Then

$$
\int_{a+\lambda}^{b}[f(t)-f(a+\lambda)] g(t) d t \leq 0
$$

and

$$
\int_{a}^{a+\lambda}[f(t)-f(a+\lambda)][h(t)-g(t)] d t \geq 0
$$

Using (3.6) and above inequalities we obtain

$$
\begin{aligned}
\int_{a}^{b} f(t) g(t) d t & \leq \int_{a}^{a+\lambda}(f(t) h(t)-[f(t)-f(a+\lambda)][h(t)-g(t)]) d t \\
& \leq \int_{a}^{a+\lambda} f(t) h(t) d t
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
\int_{a}^{b} f(t) g(t) d t & \geq \int_{b-\lambda}^{b}(f(t) h(t)-[f(t)-f(b-\lambda)][h(t)-g(t)]) d t \\
& \geq \int_{b-\lambda}^{b} f(t) h(t) d t
\end{aligned}
$$

Wu and Srivastava also proved a new sharpened and generalized version of inequality (3.1) (see [12]). We additionally assume that f is nonnegative to obtain the following weaker conditions for the parameter λ. Original result can be found in [12].

Theorem 3.7. Let f, g, h and ψ be integrable functions on $[a, b]$ with f nonnegative nonincreasing and let $0 \leq \psi \leq g \leq h-\psi$.
a) Then

$$
\int_{a}^{b} f(t) g(t) d t \leq \int_{a}^{a+\lambda} f(t) h(t) d t-\int_{a}^{b}|f(t)-f(a+\lambda)| \psi(t) d t
$$

holds, where λ is given by

$$
\int_{a}^{a+\lambda} h(t) d t \geq \int_{a}^{b} g(t) d t
$$

b) Then

$$
\int_{b-\lambda}^{b} f(t) h(t) d t+\int_{a}^{b}|f(t)-f(b-\lambda)| \psi(t) d t \leq \int_{a}^{b} f(t) g(t) d t
$$

where λ is given by

$$
\int_{b-\lambda}^{b} h(t) d t \leq \int_{a}^{b} g(t) d t .
$$

Proof. Since f is nonincreasing on $[a, b]$ we get $f(t) \geq f(a+\lambda)$ for all $t \in[a, a+\lambda]$ and $f(t) \leq f(a+\lambda)$ for all $t \in[a+\lambda, b]$. Hence, using inequality (3.6) and the fact
that $0 \leq \psi \leq g \leq h-\psi$ we get

$$
\begin{aligned}
\int_{a}^{a+\lambda} & f(t) h(t) d t-\int_{a}^{b} f(t) g(t) d t \\
& \geq \int_{a}^{a+\lambda}[f(t)-f(a+\lambda)][h(t)-g(t)] d t-\int_{a+\lambda}^{b}[f(t)-f(a+\lambda)] g(t) d t \\
& =\int_{a}^{a+\lambda}|f(t)-f(a+\lambda)|[h(t)-g(t)] d t+\int_{a+\lambda}^{b}|f(t)-f(a+\lambda)| g(t) d t \\
& \geq \int_{a}^{a+\lambda}|f(t)-f(a+\lambda)| \psi(t) d t+\int_{a+\lambda}^{b}|f(a+\lambda)-f(t)| \psi(t) d t \\
& =\int_{a}^{b}|f(t)-f(a+\lambda)| \psi(t) d t
\end{aligned}
$$

and the proof is established.

References

[1] R. Bellman, On inequalities with alternating signs, Proc. Amer. Math. Soc., $\mathbf{1 0 (5) (1 9 5 9) , ~ 8 0 7 - 8 0 9 . ~}$
[2] Z. Liu, On extensions of Steffensen's inequality, J. Math. Anal. Approx. Theory, 2(2)(2007), 132-139.
[3] P. R. Mercer, Extensions of Steffensen's inequality, J. Math. Anal. Appl., 246(1) (2000), 325-329.
[4] B. G. Pachpatte, A note on a certain generalization of Steffensen's inequality, Octogon Math. Mag., 6(1)(1998), 46-49.
[5] J. E. Pečarić, Notes on some general inequalities, Publ. Inst. Math. (Beograd), (N. S.), 32(46)(1982), 131-135.
[6] J. Pečarić, A. Perušić and K. Smoljak, Mercer and Wu-Srivastava generalisations of Steffensen's inequality, Appl. Math. Comput., 219(21)(2013), 10548-10558.
[7] J. Pečarić and K. Smoljak Kalamir, Generalized Steffensen type inequalities involving convex functions, J. Funct. Spaces, 2014(2014), Article ID 428030, 10 pages.
[8] J. Pečarić and K. Smoljak, Steffensen type inequalities involving convex functions, Math. Inequal. Appl., 18(1)(2015), 363-378.
[9] J. Pečarić and K. Smoljak Kalamir, New Steffensen type inequalities involving convex functions, Results Math., 67(1)(2015), 217-234.
[10] J. Pečarić, K. Smoljak Kalamir and S. Varošanec, Steffensen's and related inequalities (A comprehensive survey and recent advances), Monographs in inequalites 7, Element, Zagreb, 2014.
[11] J. F. Steffensen, On certain inequalities between mean values and their application to actuarial problems, Skand. Aktuarietids., (1918), 82-97.
[12] S.-H. Wu and H. M. Srivastava, Some improvements and generalizations of Steffensen's integral inequality, Appl. Math. Comput., 192(2)(2007), 422-428.

[^0]: * Corresponding Author.

 Received October 31, 2014; revised June 1, 2015; accepted November 3, 2015.
 2010 Mathematics Subject Classification: Primary 26D15; Secondary 26 A51.
 Key words and phrases: Steffensen's inequality, generalizations, Bellman-type inequality.
 This work was supported by Croatian Science Foundation under the project 5435 .

