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Abstract. The notion of quasi-valuation maps based on a subalgebra and an ideal in

BCK/BCI-algebras is introduced, and then several properties are investigated. Relations

between a quasi-valuation map based on a subalgebra and a quasi-valuation map based

on an ideal is established. In a BCI-algebra, a condition for a quasi-valuation map based

on an ideal to be a quasi-valuation map based on a subalgebra is provided, and conditions

for a real-valued function on a BCK/BCI-algebra to be a quasi-valuation map based on an

ideal are discussed. Using the notion of a quasi-valuation map based on an ideal, (pseudo)

metric spaces are constructed, and we show that the binary operation ∗ in BCK-algebras

is uniformly continuous.

1. Introduction

Logic appears in a ‘sacred’ form (resp., a ‘profane’) which is dominant in proof
theory (resp., model theory). The role of logic in mathematics and computer science
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is twofold; as a tool for applications in both areas, and a technique for laying
the foundations. Non-classical logic including many-valued logic, fuzzy logic, etc.,
takes the advantage of the classical logic to handle information with various facets
of uncertainty (see [10] for generalized theory of uncertainty), such as fuzziness,
randomness, and so on. Non-classical logic has become a formal and useful tool
for computer science to deal with fuzzy information and uncertain information.
Among all kinds of uncertainties, incomparability is an important one which can be
encountered in our life.

BCK and BCI-algebras are two classes of logical algebras. They were introduced
by Imai and Iséki (see [2],[3],[4],[5]) and have been extensively investigated by many
researchers. It is known that the class of BCK-algebras is a proper subclass of the
class of BCI-algebras.

Neggers and Kim [9] introduced the notion of d-algebras which is another use-
ful generalization of BCK-algebras, and then they investigated several relations
between d-algebras and BCK-algebras as well as some other interesting relations
between d-algebras and oriented diagraphs. In [8], Neggers et al. discussed the
ideal theory in d-algebras. Neggers et al. [7] introduced the concept of d-fuzzy
function which generalizes the concept of fuzzy subalgebra to a much larger class
of functions in a natural way. In addition they discussed a method of fuzzification
of a wide class of algebraic systems onto [0, 1] along with some consequences.

In this paper, we introduce the notion of quasi-valuation maps based on a subal-
gebra and an ideal in BCK/BCI-algebras, and then we investigate several properties.
We provide relations between a quasi-valuation map based on a subalgebra and a
quasi-valuation map based on an ideal. In a BCI-algebra, we give a condition for
a quasi-valuation map based on an ideal to be a quasi-valuation map based on a
subalgebra, and find conditions for a real-valued function on a BCK/BCI-algebra to
be a quasi-valuation map based on an ideal. Using the notion of a quasi-valuation
map based on an ideal, we construct (pseudo) metric spaces, and we show that the
binary operation ∗ in BCK-algebras is uniformly continuous.

2. Preliminaries

An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the
following axioms:

(I) (∀x, y, z ∈ X) (((x∗y)∗(x∗z))∗(z∗y) = 0),

(II) (∀x, y ∈ X) ((x∗(x∗y))∗y = 0),

(III) (∀x ∈ X) (x∗x = 0),

(IV) (∀x, y ∈ X) (x∗y = 0, y∗x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0∗x = 0),
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Table 1: ∗-operation

∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following
conditions:

(a1) (∀x ∈ X) (x∗0 = x),

(a2) (∀x, y, z ∈ X) (x∗y = 0 ⇒ (x∗z)∗(y∗z) = 0, (z∗y)∗(z∗x) = 0),

(a3) (∀x, y, z ∈ X) ((x∗y)∗z = (x∗z)∗y),

(a4) (∀x, y, z ∈ X) (((x∗z)∗(y∗z))∗(x∗y) = 0).

We can define a partial ordering ≤ by x ≤ y if and only if x∗y = 0.
A nonempty subset S of a BCK/BCI-algerba X is called a subalgebra of X if

x∗y ∈ S for all x, y ∈ S. A subset A of a BCK/BCI-algebra X is called an ideal of
X if it satisfies the following conditions:

(b1) 0 ∈ A,

(b2) (∀x, y ∈ X) (x∗y ∈ A, y ∈ A ⇒ x ∈ A).

We refer the reader to the books [1, 6] for further information regarding
BCK/BCI-algebras.

3. Quasi-Valuation Maps on BCK/BCI-Algebras

In what follows let X denote a BCK/BCI-algebra unless otherwise specified.

Definition 3.1. By a quasi-valuation map of X based on a subalgebra (briefly
S-quasi-valuation map of X), we mean a mapping f : X → R which satisfies the
following condition:

(∀x, y ∈ X) (f(x∗y) ≥ f(x) + f(y)).(3.1)

Example 3.2. Let X = {0, a, b, c} be a BCK-algebra with the ∗-operation given
by Table 1. Let f be a real-valued function on X defined by

f =

(
0 a b c
0 −1 −3 −2

)
.
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Then f is an S-quasi-valuation map of X.

Example 3.3. Let N be the set of all natural numbers. Define an operation ∗ on
N by

(∀a, b ∈ N)
(
a∗b = a

(a,b)

)
where (a, b) is the greatest common divisor of a and b. Then (N; ∗, 1) is a BCK-
algebra (see [1]). Define a real-valued function fn on N by

fn(x) =

{
t1 if x = 1, 2, 3, · · · , n,
t2 if x = n+ 1, n+ 2, n+ 3, · · ·

for all x ∈ N, where t1 and t2 are real numbers with t2 < t1 ≤ 0. Then fn is an
S-quasi-valuation map of N.

Proposition 3.4. For any S-quasi-valuation map f of a BCK-algebra X, we have

(c1) (∀x ∈ X) (f(x) ≤ 0).

Proof. For any x ∈ X, we have f(0) = f(0∗x) ≥ f(0) + f(x), and so f(x) ≤ 0. 2

For any real-valued function f on X, we consider the following conditions:

(c2) f(0) = 0.

(c3) f(x) ≥ f(x∗y) + f(y) for all x, y ∈ X.

(c4) f(x∗y) ≥ f(((x∗y)∗y)∗z) + f(z) for all x, y, z ∈ X.

(c5) f(x∗y)∗f((x∗y)∗y) for all x, y ∈ X.

(c6) f((x∗z)∗(y∗z)) ≥ f((x∗y)∗z) for all x, y, z ∈ X.

Definition 3.5. By a quasi-valuation map of X based on an ideal (briefly I-quasi-
valuation map of X), we mean a mapping f : X → R which satisfies the conditions
(c2) and (c3).

Example 3.6. Let X = {0, a, b, c, d} be a set with the ∗-operation given by Table
2. Then (X; ∗, 0) is a BCK-algerba (see [6]). Let f be a real-valued function on X
defined by

f =

(
0 a b c d
0 −4 −9 0 −11

)
.

It is easy to verify that f is an I-quasi-valuation map of X.

Example 3.7. Consider the adjoint BCI-algebra (Z;−, 0) of the additive group
(Z; +, 0) of integers. Let f be a real-valued function on Z defined by

f(x) =

{
0 if x = 0,
2x− 1 otherwise

for all x ∈ Z. Routine calculations show that f is an I-quasi-valuation map of Z.



Quasi-Valuation Maps on BCK/BCI-Algebras 863

Table 2: ∗-operation

∗ 0 a b c d

0 0 0 0 0 0
a a 0 0 a 0
b b b 0 b 0
c c c c 0 c
d d d d d 0

Theorem 3.8. In a BCK-algebra, every I-quasi-valuation map is an S-quasi-
valuation map.

Proof. Let f be an I-quasi-valuation map on a BCK-algebra X. Then

0 = f(0) = f((0∗y)∗y) = f(((x∗x)∗y)∗y)
= f(((x∗y)∗x)∗y) ≤ f((x∗y)∗x)− f(y)

≤ f(x∗y)− f(x)− f(y),

and so f(x∗y) ≥ f(x) + f(y) for all x, y ∈ X. Therefore f is an S-quasi-valuation
map of X. 2

The following example shows that the converse of Theorem 3.8 may not be true.

Example 3.9. Consider the S-quasi-valuation map f in Example 3.2. Since f(b) =
−3 � f(b∗a) + f(a), it is not an I-quasi-valuation map of X.

In general, Theorem 3.8 may not be true in a BCI-algebra as shown by the
following example.

Example 3.10. The I-quasi-valuation map f which is given in Example 3.7 is not
an S-quasi-valuation map of Z since f(3− 1) = 3 � f(3) + f(1).

We provide a condition for an I-quasi-valuation map of a BCI-algebra X to be
an S-quasi-valuation map of X.

Theorem 3.11. Let X be a BCI-algebra. If an I-quasi-valuation map f of X
satisfies f(0∗x) ≥ f(x) for all x ∈ X, then f is an S-quasi-valuation map of X.

Proof. For all x, y ∈ X, we have

f(x∗y) ≥ f((x∗y)∗x) + f(x) = f((x∗x)∗y) + f(x)

= f(0∗y) + f(x) ≥ f(x) + f(y).

Therefore f is an S-quasi-valuation map of X. 2
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Proposition 3.12. For any I-quasi-valuation map f of X, we have the following
assertions:

(1) f is order reversing.

(2) f(x∗y) + f(y∗x) ≤ 0 for all x, y ∈ X.

(3) f(x∗y) ≥ f(x∗z) + f(z∗y) for all x, y, z ∈ X.

Proof. (1) Let x, y ∈ X be such that x ≤ y. Then x∗y = 0, and so

f(x) ≥ f(x∗y) + f(y) = f(0) + f(y) = f(y).

Hence f is order reversing.
(2) Using (c3), we have f(x∗y) ≤ f(x)− f(y) and f(y∗x) ≤ f(y)− f(x) for all

x, y ∈ X. It follows that f(x∗y) + f(y∗x) ≤ 0.
(3) Note that (x∗y)∗(x∗z) ≤ z∗y for all x, y, z ∈ X. Using (c3) and (1), we have

f(x∗y) ≥ f((x∗y)∗(x∗z)) + f(x∗z) ≥ f(z∗y) + f(x∗z) for all x, y, z ∈ X. 2

Proposition 3.13. If f is an I-quasi-valuation map of X, then (c5) and (c6) are
equivalent.

Proof. Assume that (c5) is valid. Note that

((x∗(y∗z))∗z)∗z = ((x∗z)∗(y∗z))∗z ≤ (x∗y)∗z

for all x, y, z ∈ X. Since f is order reversing, it follows that

f(((x∗(y∗z))∗z)∗z) ≥ f((x∗y)∗z)

so from (a3) and (c5) that

f((x∗z)∗(y∗z)) = f((x∗(y∗z))∗z) ≥ f(((x∗(y∗z))∗z)∗z) ≥ f((x∗y)∗z).

Conversely, (c5) follows from (c6) by repalcying z with y in (c6) and using (III) and
(a1). 2

Proposition 3.14. Every I-quasi-valuation map f of X satisfies the following
implication:

(∀x, y, z ∈ X) ((x∗y)∗z = 0 ⇒ f(x) ≥ f(y) + f(z)).(3.2)

Proof. Let x, y, z ∈ X be such that (x∗y)∗z = 0. Using (c3) and (c2), we have

f(x∗y) ≥ f((x∗y)∗z) + f(z) = f(0) + f(z) = f(z)

and so f(x) ≥ f(x∗y) + f(y) ≥ f(y) + f(z). 2

The following corollary can be easily proved by induction.



Quasi-Valuation Maps on BCK/BCI-Algebras 865

Corollary 3.15. Let f be an I-quasi-valuation map of X. If

(· · · ((x∗a1)∗a2)∗ · · · )∗an = 0,

then f(x) ≥
n∑

k=1

f(ak).

We provide conditions for a real-valued function onX to be an I-quasi-valuation
map of X.

Theorem 3.16. If a real-valued function f on X satisfies the conditions (c2) and
(3.2), then f is an I-quasi-valuation map of X.

Proof. Note that (x∗(x∗y))∗y = (x∗y)∗(x∗y) = 0 for all x, y ∈ X. It follows from
(3.2) that f(x) ≥ f(x∗y)+f(y) for all x, y ∈ X. Therefore f is an I-quasi-valuation
map of X. 2

Theorem 3.17. If a function f : X → R satisfies the conditions (c2) and (c4),
then f is an I-quasi-valuation map of X.

Proof. Taking y = 0 and z = y in (c4) and using (a1), we have

f(x) = f(x∗0) ≥ f(((x∗0)∗0)∗y) + f(y) = f(x∗y) + f(y).

Hence f is an I-quasi-valuation map of X. 2

Combining Proposition 3.4 and Theorem 3.8, we know that in a BCK-algebraX,
every I-quasi-valuation map f of X satisfies the inequality (c1). But the following
example shows that an I-quasi-valuation map f on a BCI-algebra X does not satisfy
the inequality (c1).

Example 3.18. The I-quasi-valuation map f in Example 3.7 does not satisfy the
inequality (c1).

For any function f : X → R, consider the following set:

If := {x ∈ X | f(x) = 0}.

Theorem 3.19. Let X be a BCK-algebra. If f is an I-quasi-valuation map of X,
then the set If is an ideal of X.

Proof. Obviously, 0 ∈ If . Let x, y ∈ X be such that x∗y ∈ If and y ∈ If . Then
f(x∗y) = 0 and f(y) = 0. It follows from (c3) that f(x) ≥ f(x∗y) + f(y) = 0. By
Theorem 3.8 and Proposition 3.4, we have f(x) ≤ 0. Therefore f(x) = 0. Hence
x ∈ If , which shows that If is an ideal of X. 2

The following examples show that the converse of Theorem 3.19 may not be
true, that is, there exist a BCK-algebra X and a function f : X → R such that

(1) f is not an I-quasi-valuation map of X,
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Table 3: ∗-operation

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a a 0
b b b 0 b 0
c c c c 0 c
d d d d d 0

(2) If := {x ∈ X | f(x) = 0} is an ideal of X.

2

Example 3.20. Let X = {0, a, b, c, d} be a BCK-algebra with the ∗-operation
given by Table 3. Let g be a real-valued function on X defined by

g =

(
0 a b c d
0 0 −8 0 −6

)
.

Then Ig = {0, a, c} is an ideal of X. But g is not an I-quasi-valuation map of X
since g(b) = −8 < −6 = g(b∗d) + g(d).

Question. In a BCI-algebra X, if f is an I-quasi-valuation map of X, then is the
set If an ideal of X?

For a real-valued function f on a BCK-algebra X, define a mapping

df : X ×X → R, (x, y) 7→ −f(x∗y)− f(y∗x).

Lemma 3.21. If a real-valued function f on a BCK-algebra X is an I-quasi-
valuation map of X, then df is a pseudo-metric on X, and so (X, df ) is a pseudo-
metric space.

We say df is the pseudo-metric induced by an I-quasi-valuation map f.

Proof. Let f be an I-quasi-valuation map of a BCK-algebra X. Using Theorem
3.8 and Proposition 3.4, we know that df (x, y) ≥ 0 for all x, y ∈ X. Obviously,

By a pseudo-metric we mean a real-valued function d : X × X → R satisfying the
following properties: d(x, y) ≥ 0, d(x, x) = 0, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) +
d(y, z) for every x, y, z ∈ X.
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df (x, x) = 0 and df (x, y) = df (y, x) for all x, y ∈ X. Let x, y, z ∈ X. Using Propo-
sition 3.12(3), we have

df (x, y) + df (y, z) =
(
−f(x∗y)− f(y∗x)

)
+
(
−f(y∗z)− f(z∗y)

)
= −

(
f(x∗y) + f(y∗z)

)
−
(
f(z∗y) + f(y∗x)

)
≥ −f(x∗z)− f(z∗x) = df (x, z).

Therefore (X, df ) is a pseudo-metric space. 2

Theorem 3.22. Let f be an I-quasi-valuation map of a BCK-algebra X. If f
satisfies the following condition:

(∀x ∈ X) (x ̸= 0 ⇒ f(x) ̸= 0),(3.3)

then (X, df ) is a metric space.

Proof. If f is an I-quasi-valuation map of a BCK-algebra X, then (X, df ) is a
pseudo-metric space by Lemma 3.21. Let x, y ∈ X be such that df (x, y) = 0. Then
0 = df (x, y) = −f(x∗y) − f(y∗x), and so f(x∗y) = 0 and f(y∗x) = 0. It follows
from (3.3) that x∗y = 0 and y∗x = 0 so from (IV) that x = y. Therefore (X, df ) is
a metric space. 2

Proposition 3.23. Let f be an I-quasi-valuation map of a BCK-algebra X. Then
every pseudo-metric df induced by f satisfies the following inequalities:

(1) df (x, y) ≥ df (x∗a, y∗a),

(2) df (x, y) ≥ df (a∗x, a∗y),

(3) df (x∗y, a∗b) ≤ df (x∗y, a∗y) + df (a∗y, a∗b)

for all x, y, a, b ∈ X.

Proof. (1) Let x, y, a ∈ X. Since

((x∗a)∗(y∗a))∗(x∗y) = 0 and ((y∗a)∗(x∗a))∗(y∗x) = 0,

it follows from Proposition 3.12(1) that f(x∗y) ≤ f((x∗a)∗(y∗a)) and f(y∗x) ≤
f((y∗a)∗(x∗a)) so that

df (x, y) = −f(x∗y)− f(y∗x)
≥ −f((x∗a)∗(y∗a))− f((y∗a)∗(x∗a))
= df (x∗a, y∗a).

(2) It is similar to the proof of (1).
(3) Using Proposition 3.12(3), we have

f((x∗y)∗(a∗b)) ≥ f((x∗y)∗(a∗y)) + f((a∗y)∗(a∗b)),

f((a∗b)∗(x∗y)) ≥ f((a∗b)∗(a∗y)) + f((a∗y)∗(x∗y))
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for all x, y, a, b ∈ X. Hence

df (x∗y, a∗b) = −f((x∗y)∗(a∗b))− f((a∗b)∗(x∗y))
≤ −

(
f((x∗y)∗(a∗y)) + f((a∗y)∗(a∗b))

)
−
(
f((a∗b)∗(a∗y)) + f((a∗y)∗(x∗y))

)
=
(
−f((x∗y)∗(a∗y))− f((a∗y)∗(x∗y))

)
+
(
−f((a∗b)∗(a∗y))− f((a∗y)∗(a∗b))

)
= df (x∗y, a∗y) + df (a∗y, a∗b)

for all x, y, a, b ∈ X. 2

Let (X1, ∗1, 01) and (X2, ∗2, 02) be BCK-algebras. Define a binary operation ⊙
on X1 ×X2 by(

∀(x, y), (a, b) ∈ X1 ×X2

) (
(x, y)⊙ (a, b) = (x∗1a, y∗2b)

)
.

Then (X1 ×X2,⊙, (01, 02)) is a BCK-algebra (see [6]).

Lemma 3.24. For a real-valued function f on a BCK-algebra X, if df is a pseudo-
metric on X, then (X ×X, d∗f ) is a pseudo-metric space, where

d∗f
(
(x, y), (a, b)

)
= max{df (x, a), df (y, b)}(3.4)

for all (x, y), (a, b) ∈ X ×X.

Proof. Suppose df is a pseudo-metric on X. Clearly, d∗f
(
(x, y), (a, b)

)
≥ 0 for all

(x, y), (a, b) ∈ X ×X. For any (x, y), (a, b) ∈ X ×X, we have

d∗f
(
(x, y), (x, y)

)
= max{df (x, x), df (y, y)} = 0

and

d∗f
(
(x, y), (a, b)

)
= max{df (x, a), df (y, b)}
= max{df (a, x), df (b, y)}
= d∗f

(
(a, b), (x, y)

)
.

Now let (x, y), (a, b), (u, v) ∈ X ×X. Then

d∗f
(
(x, y), (u, v)

)
+ d∗f

(
(u, v), (a, b)

)
= max{df (x, u), df (y, v)}+max{df (u, a), df (v, b)}
≥ max{df (x, u) + df (u, a), df (y, v) + df (v, b)}
≥ max{df (x, a), df (y, b)}
= d∗f

(
(x, y), (a, b)

)
.

Therefore (X ×X, d∗f ) is a pseudo-metric space. 2
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Theorem 3.25. Let f : X → R be an I-quasi-valuation map of a BCK-algebra X
satisfying the condition (3.3). Then (X ×X, d∗f ) is a metric space.

Proof. Let f : X → R be an I-quasi-valuation map of a BCK-algebra X satisfying
the condition (3.3). Then df is a pseudo-metric onX by Lemma 3.21. It follows from
Lemma 3.24 that (X ×X, d∗f ) is a pseudo-metric space. Let (x, y), (a, b) ∈ X ×X

be such that d∗f
(
(x, y), (a, b)

)
= 0. Then

0 = d∗f
(
(x, y), (a, b)

)
= max{df (x, a), df (y, b)},

and so df (x, a) = 0 = df (y, b) since df (x, y) ≥ 0 for all (x, y) ∈ X ×X. Hence

0 = df (x, a) = −f(x∗a)− f(a∗x)

and
0 = df (y, b) = −f(y∗b)− f(b∗y).

It follows that f(x∗a) = 0 = f(a∗x) and f(y∗b) = 0 = f(b∗y) so from (3.3) that
x∗a = 0 = a∗x and y∗b = 0 = b∗y. Using (IV), we have a = x and b = y, and so
(x, y) = (a, b). Therefore (X ×X, d∗f ) is a metric space. 2

Theorem 3.26. If f : X → R is an I-quasi-valuation map of a BCK-algebra
X satisfying the condition (3.3), then the operation ∗ in the BCK-algebra X is
uniformly continuous.

Proof. For any ε > 0, if d∗f
(
(x, y), (a, b)

)
< ε

2 , then df (x, a) <
ε
2 and df (y, b) <

ε
2 .

Using Proposition 3.23, we have

df (x∗y, a∗b) ≤ df (x∗y, a∗y) + df (a∗y, a∗b)
≤ df (x, a) + df (y, b) <

ε
2 + ε

2 = ε.

Therefore the operation ∗ : X ×X → X is uniformly continuous. 2

The following example illustrates Theorem 3.26.

Example 3.27. Let X = {0, a, b, c} be a set with the ∗-operation given by Table
4. Then (X; ∗, 0) is a BCK-algebra (see [6]). Let f be a real-valued function on X
defined by

f =

(
0 a b c
0 −3 −4 −5

)
.

Then f is an I-quasi-valuation map of X and satisfies the condition (3.3). Using
Theorem 3.22, (X, df ) is a metric space where df is given by

df =

(
(0, 0) (0, a) (0, b) (0, c) (a, a) (a, b) (a, c) (b, b) (b, c) (c, c)
0 3 4 5 0 7 8 0 9 0

)
.

Also, (X ×X, d∗f ) is a metric space where d∗f is obtained by (3.4), for example,

d∗f
(
(a, b), (c, a)

)
= max{df (a, c), df (b, a)} = max{8, 7} = 8,
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Table 4: ∗-operation

∗ 0 a b c

0 0 0 0 0
a a 0 a a
b b b 0 b
c c c c 0

d∗f
(
(0, b), (a, c)

)
= max{df (0, a), df (b, c)} = max{3, 9} = 9,

d∗f
(
(c, a), (0, 0)

)
= max{df (c, 0), df (a, 0)} = max{5, 3} = 5,

and so on. Now, it is routine to verify that the operation ∗ in the BCK-algebra X

∗ : X ×X → X, (x, y) 7→ x∗y

is uniformly continuous.
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[3] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad.,
42(1966), 26–29.
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