References
- A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalised metric spaces, Publ. Math. Debrecen, 57(2000), 31-37.
- D. W. Boyd and J. S. W. Wong, On nonlinear contraction, Proc. Amer. Math. Soc., 20(1996), 458-464.
- L. J. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.
- P. Das, A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sci., 9(2002), 29-33.
- P. Das and L. K. Dey, Fixed point of contractive mappings in generalized metric spaces, Math. Slovaca, 59(4)(2009), 499-504. https://doi.org/10.2478/s12175-009-0143-2
- M. Edelstein, On fixed point and periodic points under contraction mappings, J. London Math. Soc., 37(2)(1962), 74-79.
- D. Ilic and V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl., 341(2008), 876-882. https://doi.org/10.1016/j.jmaa.2007.10.065
- B. K. Lahiri and P. Das, Fixed point of a Ljubomir Ciric's quasi-contraction mapping in a generalized metric space, Publ. Math. Debrecen 61(2002), 589-594.
- H. Long-Guang and Z. Xian, Cone metric spaces and fixed point theorems of contractive mapping, J. Math. Anal. Appl. 322(2007), 1468-1476.
- J. O. Olaeru and H. Akewe, An extension of Gregus fixed point theorem, Fixed Point Theory Appl., (2007), Article ID 657914.
- E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13(1962), 459-465. https://doi.org/10.1090/S0002-9939-1962-0148046-1
- S. Reich and A. J. Zaslavski, Almost all non-expansive mappings are contractive, C. R. Math. Acad. Sci. Soc. R. Can., 22(2000), 118-124.
-
S. Reich and A. J. Zaslavski, The set of non contractive mappings is
${\sigma}$ -porous in the space of all non-expansive mappings, C. R. Math. Acad. Sci. Paris, 333(2001), 539-544. https://doi.org/10.1016/S0764-4442(01)02087-0