Characteristic Genera of Closed Orientable 3-Manifolds

Akio Kawauchi
Osaka City University Advanced Mathematical Institute, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
e-mail: kawauchi@sci.osaka-cu.ac.jp

Abstract. A complete invariant defined for (closed connected orientable) 3-manifolds is an invariant defined for the 3-manifolds such that any two 3-manifolds with the same invariant are homeomorphic. Further, if the 3 -manifold itself can be reconstructed from the data of the complete invariant, then it is called a characteristic invariant defined for the 3 -manifolds. In a previous work, a characteristic lattice point invariant defined for the 3 -manifolds was constructed by using an embedding of the prime links into the set of lattice points. In this paper, a characteristic rational invariant defined for the 3manifolds called the characteristic genus defined for the 3-manifolds is constructed by using an embedding of a set of lattice points called the PDelta set into the set of rational numbers. The characteristic genus defined for the 3-manifolds is also compared with the Heegaard genus, the bridge genus and the braid genus defined for the 3-manifolds. By using this characteristic rational invariant defined for the 3 -manifolds, a smooth real function with the definition interval $(-1,1)$ called the characteristic genus function is constructed as a characteristic invariant defined for the 3-manifolds.

1. Introduction

It is classically well-known ${ }^{1}$ that every closed connected orientable surface F is characterized by the maximal number, say $n(\geqq 0)$ of mutually disjoint simple loops $\omega_{i}(i=1,2, n)$ in F such that the complement $F \backslash \cup_{i=1}^{n} \omega_{i}$ is connected. This number n is called the genus of F. We consider the union L^{0} of n mutually disjoint 0 -spheres $S_{i}^{0}(i=1,2, \ldots, n)$ in the 2 -sphere S^{2} (namely, the set of $2 n$ points in S^{2}) as an S^{0}-link with n components. Then the surface characterization stated above

Received August 13, 2015; accepted November 13, 2015.
2010 Mathematics Subject Classification: 57M25, 57M27.
Key words and phrases: Braid, 3-manifold, Prime link, Characteristic genus, Characteristic function.
This work was supported by JSPS KAKENHI Grant Number 24244005.
${ }^{1}$ cf. B. von Kerékjártó [15].
is dual to the statement that the surface F of genus n is obtained as the 1-handle surgery manifold $\chi\left(L^{0}\right)$ of S^{2} along an S^{0}-link L^{0} with n components. Let \mathbb{M}^{2} be the set of (the unoriented types of) closed connected orientable surfaces, and \mathbb{L}^{0} the set of (unoriented types of) S^{0}-links. Since any two S^{0}-links with the same number of components belong to the same type, we have a well-defined bijection

$$
\alpha^{0}: \mathbb{M}^{2} \rightarrow \mathbb{L}^{0}
$$

sending a surface $F \in \mathbb{M}^{2}$ to an S^{0}-link $L^{0} \in \mathbb{L}^{0}$ such that $\chi\left(L^{0}\right)=F$. Further, let \mathbb{X}^{0} be the set of non-negative integers, and \mathbb{G}^{0} the set of (the isomorphism classes of) "the link groups" $\pi_{1}\left(S^{2} \backslash L^{0}\right)$ of all S^{0}-links $L^{0} \in \mathbb{L}^{0}$. Then we have further two natural bijections

$$
\sigma^{0}: \mathbb{L}^{0} \rightarrow \mathbb{X}^{0}, \quad \pi^{0}: \mathbb{L}^{0} \rightarrow \mathbb{G}^{0}
$$

such that $\sigma^{0}\left(L^{0}\right)=n$ and $\pi^{0}\left(L^{0}\right)=\pi_{1}\left(S^{2} \backslash L^{0}\right)$ for an S^{0}-link L^{0} with n components, respectively, so that we have the composite bijections

$$
g^{0}=\sigma_{\alpha}^{0}=\sigma^{0} \alpha^{0}: \mathbb{M}^{2} \rightarrow \mathbb{X}^{0}, \quad \pi_{\alpha}^{0}=\pi^{0} \alpha^{0}: \mathbb{M}^{2} \rightarrow \mathbb{G}^{0}
$$

For every surface $F \in \mathbb{M}^{2}$, the number $g^{0}(F)=n$ is equal to the genus of F, and the group $\pi_{\alpha}^{0}(F)$ is a free group of rank $2 n-1($ if $n \geqq 1)$ or the trivial group $\{1\}$ (if $n=0$). Thus, the genus $g^{0}(F)$ determines the S^{0}-link $\alpha^{0}(F)$, the group $\pi_{\alpha}^{0}(F)$ and the surface F itself. As we discussed in the paper [5], an analogous argument is possible for closed connected orientable 3-manifolds, although the existence of non-trivial links in the 3 -sphere S3 makes the classification complicated. Here, for convenience we explain an idea of this argument of [5] briefly. Let \mathbb{M} be the set of (unoriented types of) closed connected orientable 3 -manifolds. Let \mathbb{L} be the set of (unoriented types of) links in S^{3} (including the knots as one-component links). A lattice point of length n is an element \mathbf{x} of \mathbb{Z}^{n} for the natural number n where \mathbb{Z} denotes the set of integers.

In this paper, the empty lattice point ϕ of length 0 and the empty knot ϕ are also considered. Let \mathbb{X} be the set of all lattice points. We have a canonical map

$$
\operatorname{cl} \beta: \mathbb{X} \rightarrow \mathbb{L}
$$

sending a lattice point \mathbf{x} to a closed braid diagram $\operatorname{cl} \beta(\mathbf{x})$, which is surjective by the Alexander theorem (cf. J. S. Birman [1]). It was shown in [5] that every well-order of the set \mathbb{X} induces an injection

$$
\sigma: \mathbb{L} \rightarrow \mathbb{X}
$$

which is a right inverse of the map $\operatorname{cl} \beta$. In particular, by taking the caninical wellorder which is explained in $\S 2$, we consider the subset $\mathbb{L}^{p} \subset \mathbb{L}$ consisting of prime links as a well-ordered set with the order inherited from \mathbb{X} by σ, where the twocomponent trivial link is excluded from \mathbb{L}^{p}. The length $\ell(L)$ of a prime link $L \in \mathbb{L}^{p}$ is the length $\ell(\sigma(L))$ of the lattice point $\sigma(L)$. Let \mathbb{G} be the set of (isomorphism
types of) the link groups $\pi_{1}\left(S^{3} \backslash L\right)$ for all links L in S^{3}. Let $\pi: \mathbb{L} \rightarrow \mathbb{G}$ be the map sending a link L to the link group $\pi_{1}\left(S^{3} \backslash L\right)$. Let \mathbb{L}^{π} be the subset of \mathbb{L}^{p} consisting of a π-minimal link, that is, a prime link L such that L is the initial element of the subset

$$
\left\{L^{\prime} \in \mathbb{L}^{p} \mid \pi_{1}\left(S^{3} \backslash L^{\prime}\right)=\pi_{1}\left(S^{3} \backslash L\right)\right\}
$$

We are interested in this subset \mathbb{L}^{π} because it has a crucial property that the restriction of π to \mathbb{L}^{π} is injective. Since the restriction of σ to \mathbb{L}^{π} is also injective, we can consider \mathbb{L}^{π} as a well-ordered set by the order induced from the order of \mathbb{X}. In [4], we showed that the set

$$
\mathbb{L}^{\pi}(M)=\left\{L \in \mathbb{L}^{\pi} \mid \chi(L, 0)=M\right\}
$$

is not empty for every 3 -manifold $M \in \mathbb{M}$, where $\chi(L, 0)$ denotes the 0 -surgery manifold of S^{3} along L and we define $\chi(L, 0)=S^{3}$ when L is the empty knot ϕ. By R. Kirby's theorem [16] on the Dehn surgeries of framed links, we note that the set $\mathbb{L}^{\pi}(M)$ is defined in terms of only links so that any two π-minimal links in $\mathbb{L}^{\pi}(M)$ are related by two kinds of Kirby moves and choices of orientations of S^{3}. Sending every 3 -manifold M to the initial element of $\mathbb{L}^{\pi}(M)$ induces an embedding

$$
\alpha: \mathbb{M} \rightarrow \mathbb{L}
$$

with $\chi(\alpha(M), 0)=M$ for every 3-manifold $M \in \mathbb{M}$, which further induces two embeddings

$$
\sigma_{\alpha}=\sigma \alpha: \mathbb{M} \rightarrow \mathbb{X}, \quad \pi_{\alpha}=\pi \alpha: \mathbb{M} \rightarrow \mathbb{G}
$$

By a special featur of the 0 -surgery, the S^{0}-link $\alpha(M) \cap S^{2}$ in S^{2} produces a surface $\chi\left(\alpha(M) \cap S^{2}\right)$ naturally embedded in M with $\alpha^{0}\left(\chi\left(\alpha(M) \cap S^{2}\right)\right)=\alpha(M) \cap S^{2}$ for every 2-sphere S^{2} in S^{3} meeting the link $\alpha(M)$ transversely. In this sense, the embedding α is an extension of the embedding α^{0}. In this construction, we can reconstruct the link $\alpha(M)$, the group $\pi_{\alpha}(M)$ and the 3 -manifold M itself from the lattice point $\sigma(M) \in \mathbb{X}$. Thus, we have constructed the embeddings σ, σ_{α} and π_{α} analogous to the embeddings σ, σ_{α} and π_{α}, respectively. The length $\ell(M)$ of a 3-manifold $M \in \mathbb{M}$ is the length $\ell\left(\sigma_{\alpha}(M)\right)$ of the lattice point $\sigma_{\alpha}(M)$. In [14], the 3 -manifolds of lengths $\leqq 10$ are classified (see also $[9,11,12]$). In this process, the prime links and their exteriors of lengths $\leqq 10$ have been earlier classified (See $[6,7,8,10]$). In general, an invariant Inv defined for a family of topological objects is complete if any two members A and A^{\prime} with $\operatorname{Inv}(A)=\operatorname{Inv}\left(A^{\prime}\right)$ are homeomorphic. The complete invariant $\operatorname{Inv}(A)$ is a characteristic invariant if the object A can be reconstructed from data of $\operatorname{Inv}(A)$. For example, the group invariant $\pi_{\alpha}(M)$ is a complete invariant defined for the 3 -manifolds $M \in \mathbb{M}$ taking the value in finitely presented groups and the lattice point $\sigma_{\alpha}(M)$ is a characteristic invariant defined for the 3-manifolds $M \in \mathbb{M}$ taking the value in lattice points. For an interval $I \subset \mathbb{R}$, we put $I_{\mathbb{Q}}=I \cap \mathbb{Q}$, where \mathbb{R} and \mathbb{Q} denote the sets of real numbers and rational numbers, respectively.

In this paper, we consider a lattice point set $P \Delta$ called the $P D$ elta set such that

$$
\sigma_{\alpha}(\mathbb{M}) \subset \sigma\left(\mathbb{L}^{p}\right) \subset P \Delta \subset \mathbb{X}
$$

An embedding $g: P \Delta \rightarrow[0,+\infty)_{\mathbb{Q}}$ called the characteristic genus is constructed so that the image $g(\mathbb{S})$ of every subset $\mathbb{S} \subset P \Delta$ containing the empty lattice point \emptyset and the zero lattice point $\mathbf{0} \in \mathbb{Z}$ (called a PDelta subset) is a characteristic invariant defined for the set \mathbb{S}. By taking $\mathbb{S}=\sigma\left(\mathbb{L}^{p}\right)$, the characteristic genus $g(L)$ defined for the prime links $L \in \mathbb{L}^{p}$ is obtained. By taking $\mathbb{S}=\sigma_{\alpha}(\mathbb{M})$, the characteristic genus $g(M)$ defined for the 3-manifolds $M \in \mathbb{M}$ is obtained.

An explanation of the PDelta set is made in $\S 2$. A construction of the embedding g is done in $\S 3$. In $\S 4$, some properties of the characteristic genera of the 3 -manifolds are stated together with the calculation results of the 3 -manifolds of lengths $\leqq 7$. In particular, the characteristic genus $g(M)$ for a 3 -manifold M is compared with the Heegaard genus $g_{h}(M)$, the bridge genus $g_{b}(M)$ and the braid genus $g_{b r}(M)$. In §5, from the characteristic genus g, we construct a smooth real function $G_{\mathbb{S}}(t)$ with the definition interval $(-1,1)$ for every PDelta subset \mathbb{S} which is a characteristic invariant defined for the set \mathbb{S}. By taking $\mathbb{S}=\sigma\left(\mathbb{L}^{p}\right)$, the characteristic prime link function $G_{\mathbb{L}^{p}}(t)$ is obtained as a characteristic invariant defined for the prime link set \mathbb{L}^{p}. By taking $\mathbb{S}=\sigma_{\alpha}(\mathbb{M})$, the characteristic genus function $G_{\mathbb{M}}(t)$ is obtained as a characteristic invariant defined for the 3-manifold set \mathbb{M}.

Concluding this introductory section, we mention here some analogous invariants derived from different viewpoints. Y. Nakagawa defined in [18] a family of integer-valued characteristic invariants of the set of knots by using R. W. Ghrist's universal template (although a generalization to oriented links appears difficult). Also, J. Milnor and W. Thurston defined in [17] a non-negative real-valued invariant defined for the closed connected 3-manifolds with the property that if $\tilde{N} \rightarrow N$ is a degree $n(\geqq 2)$ connected covering of a closed connected 3 -manifold N, then the invariant of \tilde{N} is n times the invariant of N, so that it does not classify lens spaces.

2. The Range of the Prime Links in the Set of Lattice Points

To investigate the image $\sigma\left(\mathbb{L}^{p}\right) \subset \mathbb{X}$, we need some notations on lattice points in $[5,6,7,8,9,10,11,12,14]$. For a lattice point $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of length $\ell\left((\mathbf{x})=n\right.$, we denote the lattice points $\left(x_{n}, \ldots, x_{2}, x_{1}\right)$ and $\left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)$ by \mathbf{x}^{T} and $|\mathbf{x}|$, respectively. Let $|\mathbf{x}|_{N}$ be a permutation $\left(\left|x_{j_{1}}\right|,\left|x_{j_{2}}\right|, \ldots,\left|x_{j_{n}}\right|\right)$ of the coordinates $\left|x_{j}\right|(j=1,2, \ldots, n)$ of $|\mathbf{x}|$ such that

$$
\left|x_{j_{1}}\right| \leqq\left|x_{j_{2}}\right| \leqq \cdots \leqq\left|x_{j_{n}}\right|
$$

Let $\min |\mathbf{x}|=\min _{1 \leqq i \leqq n}\left|x_{i}\right|$ and $\max |\mathbf{x}|=\max _{1 \leqq i \leqq n}\left|x_{i}\right|$. The dual lattice point of \mathbf{x} is given by $\delta(\mathbf{x})=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ where $x_{i}^{\prime}=\operatorname{sign}\left(x_{i}\right)\left(\max _{\mid} \mathbf{x}\left|+1-\left|x_{i}\right|\right)\right.$ and $\operatorname{sign}(0)=0$ by convention.

Defining $\delta^{0}(\mathbf{x})=\mathbf{x}$ and $\delta^{n}(\mathbf{x})=\delta\left(\delta^{n-1}(\mathbf{x})\right)$ inductively, we note that $\delta^{2}(\mathbf{x}) \neq \mathbf{x}$ in general, but $\delta^{n+2}(\mathbf{x})=\delta^{n}(\mathbf{x})$ for all $n \geqq 1$. For a lattice point $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$
of length m, we denote by (\mathbf{x}, \mathbf{y}) the lattice point

$$
\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}\right)
$$

of length $n+m$. For an integer m and a natural number n, we denote by m^{n} the lattice point (m, m, \ldots, m) of length n. Also, we take $-m^{n}=(-m)^{n}$. A reason why we do not consider \mathbb{L} but \mathbb{L}^{p} is because we can use the following lemma which is shown in [5]:

Lemma 2.1. We have $\operatorname{cl\beta }(\mathbf{x})=\operatorname{cl\beta }(\mathbf{y})$ in \mathbb{L} modulo split additions of trivial links if and only if \mathbf{y} is obtained from \mathbf{x} by a finite number of the following transformations:
(1) $(\mathbf{x}, 0) \leftrightarrow \mathbf{x}$.
(2) $\left(\mathbf{x}, \mathbf{y},-\mathbf{y}^{T}\right) \leftrightarrow \mathbf{x}$.
(3) $(\mathbf{x}, y) \leftrightarrow \mathbf{x}$ when $|y|>\max |\mathbf{x}|$.
(4) $(\mathbf{x}, \mathbf{y}, \mathbf{z}) \leftrightarrow(\mathbf{x}, \mathbf{z}, \mathbf{y})$ when $\min |y|>\max |z|+1$ or $\min |z|>\max |y|+1$.
(5) $(\mathbf{x}, \pm y, y+1, y) \leftrightarrow(\mathbf{x}, y+1, y, \pm(y+1))$ when $y(y+1) \neq 0$.
(6) $(\mathbf{x}, \mathbf{y}) \leftrightarrow(\mathbf{y}, \mathbf{x})$.
(7) $\mathbf{x} \leftrightarrow \mathrm{x}^{T} \leftrightarrow-\mathbf{x} \leftrightarrow-\mathrm{x}^{T}$.
(8) $\mathbf{x} \leftrightarrow \mathbf{x}^{\prime}$ when $\operatorname{cl\beta }(\mathbf{x})$ is a disconnected link and $\operatorname{cl\beta }\left(\mathbf{x}^{\prime}\right)$ is obtained from $c l \beta(\mathbf{x})$ by changing the orientation of a component of $\operatorname{cl\beta }(\mathbf{x})$.

There is an algorithm to obtain $\operatorname{cl} \beta\left(\mathbf{x}^{\prime}\right)$ from $\operatorname{cl} \beta(\mathbf{x})$ in (8).
The canonical order of \mathbb{X} is a well-order determined as follows: Namely, the well-order in \mathbb{Z} is defined by $0<1<-1<2<-2<3<-3<\ldots$, and this order of \mathbb{Z} is extended to a well-order in \mathbb{Z}^{n} for every $n \geqq 2$ so that for $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbb{Z}^{n}$ we define $\mathbf{x}_{1}<\mathbf{x}_{2}$ if we have one of the following conditions (1)-(3):
(1) $\left|\mathbf{x}_{1}\right|_{N}<\left|\mathbf{x}_{2}\right|_{N}$ by the lexicographic order (on the natural number order).
(2) $\left|\mathbf{x}_{1}\right|_{N}=\left|\mathbf{x}_{2}\right|_{N}$ and $\left|\mathbf{x}_{1}\right|<\left|\mathbf{x}_{2}\right|$ by the lexicographic order (on the natural number order).
(3) $\left|\mathbf{x}_{1}\right|=\left|\mathbf{x}_{2}\right|$ and $\mathbf{x}_{1}<\mathbf{x}_{2}$ by the lexicographic order on the well-order of \mathbb{Z} defined above.

Finally, for any two lattice points $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbb{X}$ with $\ell\left(\mathbf{x}_{1}\right)<\ell\left(\mathbf{x}_{2}\right)$, we define $\mathbf{x}_{1}<\mathbf{x}_{2}$.
For a subset $\mathbb{S} \subset \mathbb{X}$ and a non-negative integer n, let

$$
\mathbb{S}^{(n)}=\{\mathbf{x} \in \mathbb{S} \mid \ell(x) \leqq n\}
$$

and call it the n-fragment of \mathbb{S}.

The Delta set is the subset Δ of \mathbb{X} consisting of $\emptyset, \mathbf{0}$ and all lattice points \mathbf{x} of lengths $n \geqq 2$ satisfying $x_{1}=1$ and

$$
1 \leqq \min \mathbf{x} \leqq \max |\mathbf{x}| \leqq \frac{n}{2} .^{2}
$$

An important property of the Delta set Δ is that the n-fragment $\Delta^{(n)}$ of the Delta set Δ is a finite set for every non-negative integer n.

In our argument, the special lattice point \mathbf{a}_{n} of length n defined for every even integer $n=2 m \geqq 4$ is important. This lattice point \mathbf{a}_{n} is defined inductively as follows: Let $\mathbf{a}_{4}=(1,-2,1,-2)$. Assuming that $\mathbf{a}_{n}=\left(\mathbf{a}_{n}^{\prime},(-1)^{m-1} m\right)$ is defined, we define

$$
\mathbf{a}_{n}+2=\left(\mathbf{a}_{n}^{\prime},(-1)^{m}(m+1),(-1)^{m-1} m,(-1)^{m}(m+1)\right) .
$$

It is noted that the nth coordinate of \mathbf{a}_{n} is $(-1)^{m-1} m$ and $\operatorname{cl} \beta\left(\mathbf{a}_{n}\right)$ is a 2-bridge knot or a 2-bridge link according to whether m is even or odd, respectively. The $P D e l t a$ set $P \Delta$ is the subset of the Delta set Δ consisting of

$$
\emptyset, \mathbf{0}, 1^{2}, \mathbf{a}_{n}(\text { for any even } n \geqq 4)
$$

and all lattice points \mathbf{x} of lengths $n \geqq 3$ satisfying $x_{1}=1$ and

$$
1 \leqq \min |\mathbf{x}| \leqq \max |\mathbf{x}|<\frac{n}{2}
$$

A sublattice point of a lattice point \mathbf{x} is a lattice point \mathbf{x}^{\prime} such that $\mathbf{x}=\left(\mathbf{u}, \mathbf{x}^{\prime}, \mathbf{v}\right)$ for some lattice points \mathbf{u}, \mathbf{v} (which may be the empty lattice point). When we write $|\mathbf{x}|_{N}=\left(1^{e_{1}}, 2^{e_{2}}, \ldots, m^{e_{m}}\right)$ for $m=\max |\mathbf{x}|$, the non-negative integer e_{k} is called the exponent of k in \mathbf{x} and denoted by $\exp _{k}(\mathbf{x})$.

The DeltaStar set Δ^{*} is the subset of $P \Delta$ consisting of

$$
\emptyset, \mathbf{0}, 1^{n}(\text { for any } n \geqq 2), \mathbf{a}_{n}(\text { for any even } n \geqq 4)
$$

and all the lattice points $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)(n \geqq 5)$ which have all the following conditions (1)-(8):
(1) $x_{1}=1,2 \leqq\left|x_{n}\right| \leqq \max |\mathbf{x}|<\frac{n}{2}$.
(2) $\exp _{k}(\mathbf{x}) \geqq 2$ for every k with $1 \leqq k \leqq \max |\mathbf{x}|$.
(3) Every lattice point obtained from \mathbf{x} by permuting the coordinates of \mathbf{x} cyclically is not of the form $\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right)$ where $1 \leqq \max \left|\mathbf{x}^{\prime}\right|<\min \left|\mathbf{x}^{\prime \prime}\right|$.
(4) For every $i<n$, one of the following identities or inequality holds: $\left|x_{i}\right|-1=$ $\left|x_{i+1}\right|, x_{i}=x_{i+1}$ or $\left|x_{i}\right|<\left|x_{i+1}\right|$.

[^0](5) For a sublattice point \mathbf{x}^{\prime} of \mathbf{x} such that $\left|\mathbf{x}^{\prime}\right|=\left(k,(k+1)^{e}, k\right)$ and $\exp _{k} \mathbf{x}=2$ for some $k, e \geqq 1$ or such that $\left|\mathbf{x}^{\prime}\right|=\left(k^{e}, k+1, k\right)$ or $\left(k, k+1, k^{e}\right)$ and $\exp _{k}(\mathbf{x})=e+1$ for some $k, e \geqq 1$, then $\mathbf{x}^{\prime}= \pm\left(k,-\varepsilon(k+1)^{e}, k\right), \pm\left(\varepsilon k^{e},-(k+1), k\right)$ or $\pm\left(k,-(k+1), \varepsilon k^{e}\right)$ for some $\varepsilon= \pm 1$, respectively. Further, if $e=1$, then $\varepsilon=1$.
(6) For a sublattice point \mathbf{x}^{\prime} of \mathbf{x} with $\left|\mathbf{x}^{\prime}\right|=\left(k+1, k^{e}, k+1\right)$ for some $k, e \geqq 1$, then $\mathbf{x}^{\prime}= \pm\left(k+1, \varepsilon k^{e}, k+1\right)$ for some $\varepsilon= \pm 1$. Further if $e=1$, then $\varepsilon=-1$.
(7) \mathbf{x} is the initial element of the set of the lattice points obtained from every lattice point of $\pm \mathbf{x}, \pm \mathbf{x}^{T}, \pm \delta(\mathbf{x})$ and $\pm \delta(\mathbf{x})^{T}$ by permuting the coordinates cyclically.
(8) $|\mathbf{x}|$ is not of the form $\left(\left|\mathbf{x}^{\prime}\right|, k+1, k,(k+1)^{e}, k\right)$ or $\left(\left|\mathbf{x}^{\prime}\right|, k+1, k^{2}, k+1, k\right)$ for $e \geqq 1, k \geqq 2$ and $\max \left|\mathbf{x}^{\prime}\right| \leqq k$.

The following lemma is important to our argument:
Lemma 2.3. $\sigma_{\alpha}(\mathbb{M}) \subset \sigma\left(\mathbb{L}^{p}\right) \subset \Delta^{*} \subset P \Delta$.
This lemma means that the collections of the links $\operatorname{cl} \beta(\mathbf{x})$ and the 3 -manifolds $\chi(\operatorname{cl} \beta(\mathbf{x}, 0)$ for all lattice points $\mathbf{x} \in P \Delta$ contain all the prime links and all the 3 -manifolds, respectively.

Proof of Lemma 2.3. In [5], the inclusions $\sigma_{\alpha}(\mathbb{M}) \subset \sigma\left(\mathbb{L}^{p}\right) \subset \Delta$ are shown except counting the property (8). In [8, Lemma 3.6], we showed that $\sigma\left(\mathbb{L}^{p}\right)$ has (8). Then to complete the proof, it is sufficient to show that if $\mathbf{x} \in \sigma\left(\mathbb{L}^{p}\right)$ has $\ell(\mathbf{x})=n \geqq 4$ and $\max |\mathbf{x}|=\frac{n}{2}$, then we have $\mathbf{x}=\mathbf{a}_{n}$. Since \mathbf{x} is in Δ, we see that $|\mathbf{x}|_{N}=\left(1^{2}, 2^{2}, \ldots, m^{2}\right)$. By the transformations (1)-(7) in Lemma 2.1, we see that unless $|\mathbf{x}|=\left|\mathbf{a}_{n}\right|$, we can transform \mathbf{x} into a smaller lattice point \mathbf{x}^{\prime}. Then considering \mathbf{x} itself, we conclude that unless $\mathbf{x}=\mathbf{a}_{n}$, the lattice point \mathbf{x} is transformed into a smaller lattice point $\mathbf{x}^{\prime \prime}$.

The DeltaStar set Δ^{*} approximates the prime link lattice point set $\sigma\left(\mathbb{L}^{p}\right)$, but they are different. For example, the lattice point $\left(1^{2}, 2,-1^{2}, 2\right) \in \Delta^{*}$ does not belong to the prime link subset $\sigma\left(\mathbb{L}^{p}\right)$. In fact, the prime link $L=\operatorname{cl} \beta\left(1^{2}, 2,-1^{2}, 2\right)=6_{3}^{3}$ appears as a smaller lattice point $\left(1^{2}, 2,1^{2}, 2\right)$ in the tables of $[5,8,12,14]$.

3. Embedding the PDelta Set into the Set of Rational Numbers

For a lattice point $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P \Delta$ with $n \geqq 2$, we define the rational numbers

$$
\begin{aligned}
& \tau(x)=\frac{1}{n^{n-1}}\left(x_{2}+x_{3} n+\cdots+x_{n} n^{n-2}\right) \\
& g(\mathbf{x})=n+\tau(\mathbf{x})
\end{aligned}
$$

For example, we have

$$
\tau\left(1^{2}\right)=\frac{1}{2}, g\left(1^{2}\right)=2+\frac{1}{2}
$$

By convention, we put:

$$
\tau(\emptyset)=g(\emptyset)=0, \quad \tau(\mathbf{0})=0, \quad g(\mathbf{0})=1
$$

The rational number $g(\mathbf{x})$ is called the characteristic genus or simply the genus of \mathbf{x}, and $\tau(\mathbf{x})$ the decimal part of the characteristic genus $g(\mathbf{x})$ or the decimal torsion of \mathbf{x}. According to whether the last coordinate x_{n} is positive or negavtive, the lattice point \mathbf{x} is called to be ending-positive or ending-negative, respectively. We show the following theorem:
Theorem 3.1. The map $\mathbf{x} \mapsto g(\mathbf{x})$ induces an embedding

$$
g: P \Delta \rightarrow[0,+1)_{\mathbb{Q}}
$$

such that for every $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P \Delta$ with $n \geqq 3$ we have the following properties (1)-(3):
(1) According to whether \mathbf{x} is ending-positive or ending-negative, we have respectively

$$
g(\mathbf{x}) \in\left(n, n+\frac{1}{2}\right)_{\mathbb{Q}} \quad \text { or } \quad g(\mathbf{x}) \in\left(n-\frac{1}{2}, n\right)_{\mathbb{Q}}
$$

In particular, the length $\ell(\mathbf{x})$ is equal to the maximal integer not exceeding the number $g(\mathbf{x})+\frac{1}{2}$.
(2) The lattice point $\mathbf{x} \in P \Delta$ is reconstructed from the value of $g(\mathbf{x})$.
(3) There are only finitely many $\mathbf{x} \in P \Delta$ with

$$
g(\mathbf{x}) \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right)_{\mathbb{Q}} .
$$

Here is a note on the values on $\emptyset, \mathbf{0}$ and 1^{2}.
Remark 3.2. The values $\tau(\emptyset)=g(\emptyset)=0, \tau(\mathbf{0})=0$ and $g(\mathbf{0})$ are not definite values. For example, As another choice, by a geometric meaning on the braids, the zero lattice point $\mathbf{0}$ may be considered as the lattice point $(1,-1)$ where the values $\tau(1,-1)=-\frac{1}{2}$ and $g(1,-1)=2-\frac{1}{2}=1+\frac{1}{2}$ are taken. On the other hand, the lattice points $(1,-1)$ and 1^{2} are considered as exceptional ones in the sense that the characteristic genus does not determine the decimal torsion uniquely as follows:

$$
g(1,-1)=2-\frac{1}{2}=1+\frac{1}{2} \quad \text { and } \quad g\left(1^{2}\right)=2+\frac{1}{2}=3-\frac{1}{2} .
$$

Proof of Theorem 3.1. To show the first half of (1), first consider a lattice point $\mathbf{x} \in P \Delta$ with $\left|x_{i}\right|<\frac{n}{2}$ for all i. Then we have $\left|x_{i}\right| \leqq \frac{n-1}{2}$ and

$$
\begin{aligned}
\left|\tau(\mathbf{x})-\frac{x_{n}}{n}\right| & \leqq \frac{n-1}{2} \cdot \frac{1}{n^{n-1}}\left(1+n+\cdots+n^{n-3}\right) \\
& =\frac{n-1}{2} \cdot \frac{1}{n^{n-1}} \cdot \frac{n^{n-2}-1}{n-1} \frac{1}{2}\left(\frac{1}{n}-\frac{1}{n^{n-1}}\right)<\frac{1}{2 n}
\end{aligned}
$$

Hence

$$
-\frac{1}{2 n}<\tau(\mathbf{x})-\frac{x_{n}}{n}<\frac{1}{2 n} .
$$

Since $x_{n} \neq 0$, this shows the assertion of (1) except for the lattice points \mathbf{a}_{n}. Let $\mathbf{a}_{n}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. It is directly checked that $\left|g\left(\mathbf{a}_{n}\right)-n\right|<\frac{1}{2}$ and $\left|\tau\left(\mathbf{a}_{n}\right)-\frac{a_{n}}{n}\right|<$ $\frac{1}{2 n}$ for $n=4$. Let $n \geqq 6$ be even. Since $\left|a_{i}\right|<\frac{n}{2}$ for all i except $\left|a_{n-2}\right|=\left|a_{n}\right|=\frac{n}{2}$ and $\left|a_{n-1}\right|=\frac{n-2}{2}$, we have

$$
\begin{aligned}
\left\lvert\, \tau\left(\mathbf{a}_{n}\right)-\left(\frac{a_{n-2}}{n^{3}}+\right.\right. & \left.\frac{a_{n-1}}{n^{2}}+\frac{a_{n}}{n}\right) \left\lvert\, \leqq \frac{n-1}{2} \cdot \frac{1}{n^{n-1}}\left(1+n+\cdots+n^{n-5}\right)\right. \\
& =\frac{n-1}{2} \cdot \frac{1}{n^{n-1}} \cdot \frac{n^{n-4}-1}{n-1}=\frac{1}{2 n^{3}}-\frac{1}{2 n^{n-1}}<\frac{1}{2 n^{3}}
\end{aligned}
$$

For the $\operatorname{sign} \varepsilon$ of a_{n}, we have

$$
\frac{a_{n-2}}{n^{3}}+\frac{a_{n-1}}{n^{2}}+\frac{a_{n}}{n}=\varepsilon\left(\frac{1}{2 n^{2}}-\frac{n-2}{2 n^{2}}+\frac{1}{2}=\frac{\varepsilon(n-1)(n+1)}{2 n^{2}}\right.
$$

so that

$$
-\frac{1}{2 n^{3}}<\tau\left(\mathbf{a}_{n}\right)-\frac{\varepsilon(n-1)(n+1)}{2 n^{2}}<\frac{1}{2 n^{3}}
$$

This shows that the assertion of (1) holds for the lattice points \mathbf{a}_{n}.
To show that g is an embedding, let $\ell(\mathbf{x})=n \geqq 3$. Then $g(\mathbf{x})$ is distinct from $g(\emptyset)=0, g(\mathbf{0})=1$ and $g\left(1^{2}\right) 1+\frac{1}{2}$. If the value of $g(\mathbf{x})$ is given, then the length $n(\geqq 3)$ of \mathbf{x} is uniquely determined by (1). For $\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \in P \Delta$, assume that

$$
g(\mathbf{x})=g\left(\mathbf{x}^{\prime}\right)=n+\frac{x_{2}^{\prime}}{n^{n-1}}+\cdots+\frac{x_{n}^{\prime}}{n}
$$

If $\max |\mathbf{x}|<\frac{n}{2}$ or $\max \left|\mathbf{x}^{\prime}\right|<\frac{n}{2}$, then we have inductively

$$
x_{i}^{\prime}-x_{i} \equiv 0 \quad(\bmod n) \text { and }\left|x_{i}^{\prime}-x_{i}\right| \leqq\left|x_{i}^{\prime}\right|+\left|x_{i}\right|<\frac{n}{2}+\frac{n}{2}=n
$$

for all $i(i=1,2, \ldots, n)$. Thus, we must have $x_{i}^{\prime}-x_{i}=0(i=1,2, \ldots, n)$ and $\mathbf{x}=\mathbf{x}^{\prime}$. If $\max |\mathbf{x}|=\frac{n}{2}$ or $\max \left|\mathbf{x}^{\prime}\right|=\frac{n}{2}$, then we obtain by definition and the argument above $\mathbf{x}=\mathbf{x}^{\prime}=\mathbf{a}_{n}$, showing (2). Since there are only finitely many lattice points with length n in $P \Delta$, we have (3) by(1).

The decimal torsion and the characteristic genus of a prime link $L \in \mathbb{L}^{p}$ is defined to be $\tau(L)=\tau(\sigma(L))$ and $g(L)=g(\sigma(L))$, respectively. Then $g(L)=$ $\ell(L)+\tau(L)$. For the empty knot ϕ, the trivial knot O and the Hopf link 2_{1}^{2}, we have

$$
\tau(\phi)=g(\phi)=0, \tau(O)=0, g(O)=1, \tau\left(2_{1}^{2}\right)=\frac{1}{2}, g\left(2_{1}^{2}\right)=2+\frac{1}{2}
$$

Further, for every prime link L with $\ell(L) \geqq 3$, we have

$$
g(L) \in\left(\ell(L)-\frac{1}{2}, \ell(L)+\frac{1}{2}\right)_{\mathbb{Q}}
$$

by Theorem 3.1. The decimal torsion and the characteristic genus of a 3 -manifold $M \in \mathbb{M}$ is defined to be $\tau(M)=\tau\left(\sigma_{\alpha}(M)\right)$ and $g(M)=g\left(\sigma_{\alpha}(M)\right)$, respectively, whose properties will be discussed in § 4.

It is also noted that there are many embeddings similar to g. For example, for a lattice point $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Delta$, we define the rational number

$$
g^{\prime}(\mathbf{x})=n+\frac{x_{2}}{(n+1)^{n-1}}+\cdots+\frac{x_{n}}{n+1} .
$$

By convention, we have $g^{\prime}(\emptyset)=0$ and $g^{\prime}(\mathbf{0})=1$. The following embedding result is essentially a consequence of Theorem 3.1 and observed earlier in [8] (, although the Delta set was taken as a smaller set).
Corollary 3.3. The map $\mathbf{x} \mapsto g^{\prime}(\mathbf{x})$ induces an embedding

$$
g^{\prime}: \Delta \rightarrow[0,+1)_{\mathbb{Q}}
$$

such that for every $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Delta$ with $n \geqq 2$ we have the following properties (1)-(3):
(1) $\left|g^{\prime}(\mathbf{x})-n\right|<\frac{1}{2}$.
(2) The lattice point $\mathbf{x} \in \Delta$ is reconstructed from the value of $g^{\prime}(\mathbf{x})$.
(3) There are only finitely many $\mathbf{x} \in \Delta$ with

$$
g^{\prime}(\mathbf{x}) \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right)_{\mathbb{Q}} .
$$

In fact, this corollary is shown by an analogous argument of Theorem 3.1 taking a lattice point \mathbf{x} of length n as a lattice point ($\mathbf{x}, 0$) of length $n+1$. Our argument also goes well by using Corollary 3.2, but there is a demerit that the denominator of the rational value becomes further large.

In the forthcoming paper [13], a joint work with T. Tayama, a subset of the Delta set Δ, called the $A D$ elta set $A \Delta$ which is different from the PDelta set $P \Delta$ discussed here, is discussed as a complex number version of this paper by representing every lattice point of $A \Delta$ in the complex number plane with norm smaller than or equal to $\frac{1}{2}$.

4. Properties of the Characteristic Genus of a 3-Manifold

Table 4.1: The characteristic genera of 3 -manifolds with lengths up to 7

M	x	g
$M_{0,1}=\chi(\phi, 0)=S^{3}$	ϕ	0
$M_{1,1}=\chi(O, 0)=S^{1} \times S^{2}$	0	1
$M_{3,1}=\chi\left(3_{1}, 0\right)$	1^{3}	$3+\frac{4}{9}=3.44444444 \ldots$
$M_{4,1}=\chi\left(4_{1}^{2}, 0\right)$	$1{ }^{4}$	$4+\frac{21}{64}=4.328125$
$M_{4,2}=\chi\left(4_{1}, 0\right)$	(1, -2, 1, -2)	$4-\frac{15}{32}=3.53125$
$M_{5,1}=\chi\left(5_{1}, 0\right)$	1^{5}	$5+\frac{156}{625}=5 \ldots$.
$M_{5,2}=\chi\left(5_{1}^{2}, 0\right)$	$\left(1^{2},-2,1,-2\right)$	$5-\frac{234}{625}=4 \ldots$.
$M_{6,1}=\chi\left(6_{1}^{2}, 0\right)$	1^{6}	$6+\frac{1555}{7776}=6.199974279$
$M_{6,2}=\chi\left(5_{2}, 0\right)$	$\left(1^{3}, 2,-1,2\right)$	$6+\frac{2455}{7776}=6.31571502$
$M_{6,3}=\chi\left(6_{2}, 0\right)$	$\left(1^{3},-2,1,-2\right)$	$6-\frac{2441}{7776}=5.68608539$.
$M_{6,4}=\chi\left(6_{3}^{3}, 0\right)$	$\left(1^{2}, 2,1^{2}, 2\right)$	$6+\frac{2857}{7776}=6.367412551$
$M_{6,5}=\chi\left(6_{1}^{3}, 0\right)$	$\left(1^{2},-2,1^{2},-2\right)$	$6-\frac{2351}{7776}=5.697659465$.
$M_{6,6}=\chi\left(6_{3}, 0\right)$	$\left(1^{2},-2,1,-2^{2}\right)$	$6-\frac{2999}{7776}=5.614326131 \ldots$
$M_{6,7}=\chi\left(6_{2}^{3}, 0\right)$	$(1,-2,1,-2,1,-2)$	$6-\frac{611}{1944}=5.685699588$
$M_{6,8}=\chi\left(6_{3}^{2}, 0\right)$	(1, -2, 1, 3, -2, 3)	$6+\frac{223}{486}=6.458847736$.
$M_{7,1}=\chi\left(7_{1}, 0\right)$	17	$7+\frac{19608}{117649}=7.16666525$
$M_{7,2}=\chi\left(6_{2}^{2}, 0\right)$	$\left(1^{4}, 2,-1,2\right)$	$7+\frac{31956}{117649}=7.271621518$
$M_{7,3}=\chi\left(7_{1}^{2}, 0\right)$	$\left(1^{4},-2,1,-2\right)$	$7-\frac{31842}{117649}=6.729347465$
$M_{7,4}=\chi\left(7_{4}^{2}, 0\right)$	$\left(1^{3},-2,1^{2},-2\right)$	$7-\frac{30960}{117649}=6.736844342$.
$M_{7,5}=\chi\left(7_{2}^{2}, 0\right)$	$\left(1^{3},-2,1,-2^{2}\right)$	$7-\frac{38163}{117649}=6.675619852$.
$M_{7,6}=\chi\left(7_{5}^{2}, 0\right)$	$\left(1^{2},-2,1^{2},-2^{2}\right)$	$7-\frac{38037}{117649}=6.676690834 \ldots$
$M_{7,7}=\chi\left(7_{6}^{2}, 0\right)$	$\left(1^{2},-2,1,-2,1,-2\right)$	$7-\frac{31863}{117649}=6.729168968 \ldots$
$M_{7,8}=\chi\left(6_{1}, 0\right)$	$\left(1^{2}, 2,-1,-3,2,-3\right)$	$7-\frac{46682}{117649}=6.603209548 \ldots$
$M_{7,9}=\chi\left(7_{6}, 0\right)$	$\left(1^{2},-2,1,3,-2,3\right)$	$7+\frac{46684}{117649}=7.396807452 \ldots$
$M_{7,10}=\chi\left(7_{7}, 0\right)$	$(1,-2,1,-2,3,-2,3)$	$7+\frac{46555}{117649}=7.39571097 \ldots$
$M_{7,11}=\chi\left(7_{1}^{3}, 0\right)$	(1, -2, 1, 3, -2 $\left.{ }^{2}, 3\right)$	$7+\frac{45085}{117649}=7.383216176 \ldots$

By the classification of [5], if $\ell(M)=1,2$, then we have $M=S^{1} \times S^{2}, S^{3}$, respectively. The reason why S^{3} occurs by $\ell(M)=2$ is because we take S^{3} as the 0 -surgery manifold of S^{3} along the Hopf link 2_{1}^{2} and we have $\sigma_{\alpha}\left(S^{3}\right)=1^{2}$. However, we can also take S^{3} as the 3 -manifold without 0 -surgery of S^{3} along a link. This is the reason why the empty lattice point $\emptyset \in P \Delta \subset \mathbb{X}$ of length 0 and the empty knot $\phi \in \mathbb{L}^{p}$ with bridge index 0 are introduced. We assume

$$
\alpha\left(S^{3}\right)=\phi, \sigma_{\alpha}\left(S^{3}\right)=\emptyset, \ell(\emptyset)=0, g(\emptyset)=0
$$

so that $g\left(S^{3}\right)=0$. Also, we have the group invariant $\pi_{\alpha}\left(S^{3}\right)=\{1\}$ by introducing the trivial group $\{1\}$ to the set \mathbb{G} of link groups. Under this consideration, there is no 3-manifold $M \in \mathbb{M}$ with $\ell(M)=2$. Since $\sigma_{\alpha}(M) \subset P \Delta$ and the n-fragment of $P \Delta$ for every n is a finite set, there are only finitely many 3 -manifolds with length
n for every $n \geqq 0$. According to the canonical well-order of \mathbb{X}, the 3 -manifolds of length $n \geqq 1$ are enumerated as follows:

$$
M_{n, 1}<M_{n, 2}<\cdots<M_{n, m_{n}}
$$

for a non-negative integer m_{n} depending only on n. By the introduction of the empty knot $\phi \in \mathbb{L}^{p}$, we put $M_{0,1}=S^{3}$. By [5], we reconstruct from the lattice point $\sigma_{\alpha}\left(M_{n, i}\right)$ the link $\alpha\left(M_{n, i}\right) \in \mathbb{L}^{p}$, the group $\pi_{\alpha}\left(M_{n, i}\right) \in \mathbb{G}$ and the 3-manifold $M_{n, i}$ itself. By (2) of Theorem 3.1, we reconstruct the lattice point $\sigma_{\alpha}\left(M_{n, i}\right)$ from the characteristic genus $g\left(M_{n, i}\right)$, so that we can construct from $g\left(M_{n, i}\right)$ the lattice point $\sigma_{\alpha}\left(M_{n, i}\right)$, the link $\alpha\left(M_{n, i}\right)$, the group $\pi_{\alpha}\left(M_{n, i}\right)$ and the 3 -manifold $M_{n, i}$ itself.

In [KTB] the lattice points of the 3 -manifolds $M_{n, i}$ together with the geometric structures for all $n \leqq 10$ are listed. In the following table, the characteristic genera $g\left(M_{n, i}\right)$ for all $n \leqq 7$ are given together with the data of the lattice point $\sigma_{\alpha}\left(M_{n, i}\right)$ and the link $\alpha\left(M_{n, i}\right)$ identified with a knot or a link in D . Rolfsen's table [20], where it is noted that there is no 3 -manifold of length 2 by the reason stated above and at this point the table is different from the tables of $[5,11,12,14]$.

For every 3-manifold $M \in \mathbb{M}$ with $M \neq S^{3}, S^{1} \times S^{3}$, we have $\ell(M) \geqq 3$. Every 3-manifold $M \in \mathbb{M}$ has a Heegaard splitting, i.e., a union of two handlebodies by pasting along the boundaries. The Heegaard genus, $g_{h}(M)$ of M is the minimum of the genera of such handlebodies. The following lemma gives a relationship between a bridge presentation of a link $L \in \mathbb{L}$ (see [3] for an explanation of bridge presentation) and Heegaard splittings of the Dehn surgery manifolds along L.
Lemma 4.2. Let a link $L \in \mathbb{L}$ have a g-bridge presentation. Then every Dehn surgery manifold M of S^{3} along L admits a Heegaard splitting of genus g.
Proof. Since S^{3} is a union of two 3 -balls B, B^{\prime} pasting along the boundary spheres such that $T=L \cap B$ and $T^{\prime}=L \cap B^{\prime}$ are trivial tangles of g proper arcs in B and B^{\prime}, respectively. Let $N(T)$ be a tubular neighborhood of T in $B, V=\operatorname{cl}(B \backslash N(T))$, and $V^{\prime}=B^{\prime} \cup N(T)$. By construction, V and V^{\prime} are handlebodies of genus g and forms a Heegaard splitting of S^{3}. To complete the proof, it suffices to show that the Dehn surgery from S^{3} to M along L just changes V^{\prime} into another handlebody $V^{\prime \prime}$, so that V and $V^{\prime \prime}$ forms a Heegaard splitting of M of genus g. Since T^{\prime} is a trivial tangle in B^{\prime} of g proper arcs, there are $g-1$ proper disks $D_{i}(i=1,2, \ldots, g-1)$ in B^{\prime} which split B^{\prime} into a 3-manifold regarded as a tubular neighborhood $N\left(T^{\prime}\right)$ of T^{\prime} in B^{\prime}. Then the union $N(L)=N(T) \cup N\left(T^{\prime}\right)$ is regarded as a tubular neighborhood of L in S^{3}. The Dehn surgery from S^{3} to M along L just changes $N(L)$ into the union of solid tori obtained from $N(L)$ by the Dehn surgery without changing the boundary $\partial N(L)$. Thus, we obtain the desired handlebody $V^{\prime \prime}$ by pasting along the disks corresponding to $D_{i}(i=1,2, \ldots, g-1)$.

Let $g_{b}(M)$ and $g_{b r}(M)$ denote respectively the bridge genus and the braid genus of M, namely the minimal bridge index and the minimal braid index for links whose 0 -surgery manifolds are M. We define $g_{b}\left(S^{3}\right)=g_{b r}\left(S^{3}\right)=0$ by considering that S^{3} is obtained from S^{3} by the 0 -surgery along the empty knot ϕ. The 3 -manifold
M with $\ell(M) \geqq 3$ is ending-positive or ending-negative, respectively, according to whether $\sigma_{\alpha}(M)$ is ending-positive or ending-negative. Then we have the following lemma:
Lemma 4.3. For every $M \in \mathbb{M}$ with $\ell(M) \geqq 3$, we have

$$
2 g_{h}(M)-2 \leqq 2 g_{b}(M)-2 \leqq 2 g_{b r}(M)-2 \leqq \ell(M)<g(M)+\operatorname{end}(M)
$$

where end (M) is 0 or $\frac{1}{2}$, respectively, according to whether M is ending-positive or ending-negative.
Proof. By Lemmas 2.3 and 4.2, we have

$$
g_{h}(M) \leqq g_{b}(M) \leqq g_{b r}(M) \leqq \frac{\ell(M)}{2}+1
$$

By Theorem 3.1 (1), according to whether M is ending-positive or ending-negative, the inequality $\ell(M)<g(M)$ or $\ell(M)<g(M)+\frac{1}{2}$ holds, respectively, from which the result follows.

We show the following theorem:
Theorem 4.4. The characteristic genus $g(M)$ of every $M \in \mathbb{M}$ is a characteristic invariant defined for \mathbb{M} such that

$$
\begin{aligned}
& g_{h}\left(S^{3}\right)=g_{b}\left(S^{3}\right)=g_{b r}\left(S^{3}\right)=g\left(S^{3}\right)=\ell\left(S^{3}\right)=0 \\
& g_{h}\left(S^{1} \times S^{3}\right)=g_{b}\left(S^{1} \times S^{3}\right)=g_{b r}\left(S^{1} \times S^{3}\right)=g\left(S^{1} \times S^{3}\right)=\ell\left(S^{1} \times S^{3}\right)=1
\end{aligned}
$$

and every $M \in \mathbb{M}$ with $M \neq S^{3}, S^{1} \times S^{3}$ has the following properties:
(1) The 3-manifold M itself, the lattice point $\sigma_{\alpha}(M)$, the link $\alpha(M)$ and the group $\pi_{\alpha}(M)$ are reconstructed from the value of $g(M)$.
(2) According to whether M is ending-positive or ending-negative, the characteristic genus $g(M)$ belongs to $\left(n, n+\frac{1}{2}\right)_{\mathbb{Q}}$ or $\left(n-\frac{1}{2}, n\right)_{\mathbb{Q}}$ for $n=\ell(M)$.
(3) There are only finitely many 3-manifolds $M \in \mathbb{M}$ such that

$$
g(M) \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right)_{\mathbb{Q}} .
$$

(4) The inequalities

$$
2 g_{h}(M)-2 \leqq 2 g_{b}(M)-2 \leqq 2 g_{b r}(M)-2 \leqq \ell(M)<g(M)+\operatorname{end}(M)
$$

hold, where end (M) is 0 or $\frac{1}{2}$, respectively, according to whether M is ending-positive or ending-negative.
Proof. By definition, we have the values of S^{3} and $S^{1} \times S^{2}$. By the property of σ_{α} in [5] and Theorem 3.1, it is seen that $g(M)$ is a characteristic rational invariant defined for \mathbb{M} and the properties (1)-(3) hold. (4) is obtained in Lemma 4.3.

The following corollary is direct from Theorem 4.5 (3).
Corollary 4.5. For any infinite subset $\mathbb{M}^{\prime} \subset \mathbb{M}$, we have

$$
\sup \left\{\ell(M) \mid M \in \mathbb{M}^{\prime}\right\}=+\infty
$$

For every integer $n>1$, since there are infinitely many 3 -manifolds $M \in \mathbb{M}$ with $g_{b r}(M) \leqq n$, we see from Corollary 4.5 that there are lots of 3-manifolds $M \in \mathbb{M}$ such that the difference $\ell(M)-g_{b r}(M)$ is sufficiently large. However, exact calculations of the invariants $g_{b}(M), g_{b r}(M), \ell(M)$ for most 3-manifolds are not known and remain as an open problem. Here are some elementary examples.

Example 4.6. (1) Let $M=\chi\left(3_{1}, 0\right)=M_{3,1}$ for the trefoil knot 3_{1}. Since the braid index of 3_{1} is 2 and M is not the lens space, we see from Table 4.1 that

$$
g_{h}(M)=g_{b}(M)=g_{b r}(M)=2<\frac{\ell(M)}{2}+1=2.5 \text { and } g(M)=3+\frac{4}{9}=3.444 \ldots .
$$

(2) Let $M=\chi\left(4_{1}^{2}, 0\right)=M_{4,1}$ for the (2,4)-torus link 4_{1}^{2}. Since the braid index of 4_{1}^{2} is 2 and the first integral homology $H_{1}(M)$ has exactly 2 generators, we see from Table 4.1 that

$$
g_{h}(M)=g_{b}(M)=g_{b r}(M)=2<\frac{\ell(M)}{2}+1=3 \text { and } g(M)=4+\frac{21}{64}=4.328 \ldots .
$$

(3) Let $M=\chi\left(4_{1}, 0\right)=M_{4,2}$ for the figure eight knot 4_{1}. Since the bridge index of 4_{1} is 2 and M is not any lens space, we see that $g_{h}(M)=g_{b}(M)=2$. If M is obtained from a knot or link of braid index 2 , then M would be obtained from a $(2 k+1)$-half-twist knot $K(k)$ by 0 -surgery. However, this is impossible because the Alexander polynomial of the homology handles M and $M(k)=\chi(K(k), 0)$ are

$$
A_{M}(t)=t^{2}-3 t+1, \quad A_{M(k)}=\frac{t^{2 k+1}+1}{t+1}
$$

and they are distinct. These results and Table 4.1 mean that

$$
g_{h}(M)=g_{b}(M)=2<g_{b r}(M)=\frac{\ell(M)}{2}+1=3<g(M)=4-\frac{15}{32}=3.531 \ldots .
$$

We note here that the bridge genus behaves differently from the Heegaard genus, although $g_{h}(M)=g_{b}(M)$ in Example 4.6. For example, if M is a lens space except S^{3} and $S^{1} \times S^{2}$, then we have $g_{b}(M) \geqq 3$ whereas $g_{h}(M)=1$. In fact, the first homology $H_{1}(M)$ is a non-trivial finite cyclic group. Onthe other hand, if $1 \leqq g_{b}(M) \leqq 2$, then $H_{1}(M)$ would be isomorphic to the infinite cyclic group \mathbb{Z} or a direct double $\mathbb{Z} / m \mathbb{Z} \oplus \mathbb{Z} / m \mathbb{Z}$ for some $m \geqq 0$, which is a contradiction. Concretly,
the pro-ective 3 -space $M=P^{3}$ has $\sigma_{\alpha}(M)=\left(1^{2}, 2,1^{2}, 2\right)$ (see [5, 14]) and hence $g_{b}(M)=3$. By developing a similar consideration, S. Okazaki[19] has observed a linear independence on the Heegaard genus $g_{h}(M)$, the bridge genus $g_{b}(M)$ and the braid genus $g_{b r}(M)$.

5. Constructing a Characteristic Smooth Real Function Defined for the PDelta Set

A PDelta subset is a subset \mathbb{S} of the PDelta set $P \Delta$ containing the lattice points \emptyset and $\mathbf{0}^{3}$. Let a and t be real numbers such that either $-1 \leqq a \leqq 1$ and $-1<t<1$ or $-1<a<1$ and $-1 \leqq t \leqq 1$. Then the linear fraction

$$
B(t ; a)=\frac{t-a}{1-a t}
$$

is considered. If $|t|<1$ and $|a|<1$, then $|B(t ; a)|<1$, because we have

$$
1-|B(t ; a)|^{2}=\frac{\left(1-t^{2}\right)\left(1-a^{2}\right)}{(1-a t)^{2}}
$$

If $|a|=1$ or $|t|=1$, then it is easily checked that $|B(t ; a)|=1$. In fact, we have $B(t ; \pm 1)=B(\mp 1, a)=\mp 1$.

Noting that the decimal torsions of $\emptyset, \mathbf{0}$ and 1^{2} are not definite values as it is explained in Remark 3.2, we put the following definition for any $\mathbf{x} \in P \Delta$:

$$
G_{\mathbf{x}}(t)= \begin{cases}B(t ; \tau(\mathbf{x})) & (\ell(\mathbf{x}) \geqq 3) \\ B(t ; 1)=-1 & \left(\mathbf{x}=1^{2}\right) \\ B(t ;-1)=1 & (\mathbf{x}=\emptyset, \mathbf{0})\end{cases}
$$

For every n-fragment $\mathbb{S}^{(n)}$ of a PDelta subset $\mathbb{S} \subset P \Delta$, the function

$$
G_{\mathbb{S}}^{(n)}(t)=\prod_{\mathbf{x} \in \mathbb{S}(n)} G_{\mathbf{x}}(t)
$$

is called a finite Blaschke product ${ }^{4}$ whose zero's are precisely the decimal torsions $\tau(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{S}^{(n)}$ except $\emptyset, \mathbf{0}$ and 1^{2}. By the assumption of the set \mathbb{S}, we have

$$
G_{\mathbb{S}}^{(0)}(t)=G_{\mathbb{S}}^{(1)}(t)=1
$$

Further, according to whether the lattice point 1^{2} belongs to \mathbb{S} or not, we have $G_{\mathbb{S}}^{(2)}(t)=-1$ or 1 , respectively. For example, when we take $\mathbb{S}=\mathbb{L}^{p}$, the functions $G_{\mathbb{L}^{p}}^{(n)}(t)$ for $n=0,1,2,3,4,5$ are calculated as follows:

[^1]\[

$$
\begin{aligned}
G_{\mathbb{L}^{p}}^{(0)}(t) & =1, \\
G_{\mathbb{L}^{p}}^{(1)}(t) & =1, \\
G_{\mathbb{L}^{p}}^{(2)}(t) & =-1, \\
G_{\mathbb{L}^{p}}^{(3)}(t) & =-G_{1^{3}}(t)=-B\left(t ; \frac{4}{9}\right), \\
G_{\mathbb{L}^{p}}^{(4)}(t) & =-G_{1^{3}}(t) Q_{1^{4}}(t) G_{(1,-2,1,-2)}(t)=-B\left(t ; \frac{4}{9}\right) B\left(t ; \frac{21}{64}\right) B\left(t ; \frac{\exp \left(\frac{5 \pi \mathbf{i}}{4}\right)}{16}\right), \\
G_{\mathbb{L}^{p}}^{(5)}(t) & =-G_{1^{3}}(t) G_{1^{4}}(t) G_{(1,-2,1,-2)}(t) G_{1^{5}}(t) G_{\left(1^{2},-2,1,-2\right)}(t) \\
& =-B\left(t ; \frac{4}{9}\right) B\left(t ; \frac{21}{64}\right) B\left(t ; \frac{-15}{32}\right) B\left(t ; \frac{156}{625}\right) B\left(t ; \frac{-234}{625}\right) .
\end{aligned}
$$
\]

We obtain the following theorem.
Theorem 5.1. For every PDelta subset \mathbb{S}, the series function

$$
G_{\mathbb{S}}(t)=\sum_{n=0}^{+\infty} G_{\mathbb{S}}^{(n)}(t) t^{n}
$$

is a smooth real function defined on the interval $(-1,1)$ which is a characteristic invariant defined for the set \mathbb{S}.
Proof. Since $\left|G_{\mathbb{S}}^{(n)}(t)\right| \leqq 1$ for any n, we have

$$
\left|G_{\mathbb{S}}(t)\right| \leqq \sum_{n=0}^{+\infty}|t|^{n}=\frac{1}{1-|t|}
$$

This means that the series $G_{\mathbb{S}}(t)$ defined on $(-1,1)$ is uniformly convergent in the wide sense. Using that the function $G_{\mathbb{S}}^{(n)}(t)(t \in(-1,1))$ is uniformly convergent in the wide sense, we see from the Weierstrass double series theorem that the series function $G_{\mathbb{S}}(t)$ is a smooth real function defined on $(-1,1)$. To see that the function $G_{\mathbb{S}}(t)$ is characteristic for \mathbb{S}, it suffices to see by induction on $n \geqq 2$ that the set of the decimal torsions $\tau(\mathbf{x})$ for all lattice points $\mathbf{x} \in \mathbb{S}^{(n)}$ except $\emptyset, \mathbf{0}$ is determined by the function $G_{\mathbb{S}}(t)$. According to whether 1^{2} is in \mathbb{S} or not, the second derivative $\frac{d^{2}}{t^{2}} G_{\mathbb{S}}(0)$ is -2 or 2 , respectively. Thus, $\mathbb{S}^{(2)}$ is determined by the function $G_{\mathbb{S}}(t)$. Assume that all the lattice points of $\mathbb{S}^{(n-1)}(n-1 \geqq 2)$ are determined by the function $G_{\mathbb{S}}(t)$. Let

$$
\bar{G}_{\mathbb{S}}^{(n)}(t)=G_{\mathbb{S}}(t)-\sum_{i=0}^{n-1} G^{(i)} \mathbb{S}(t) t^{i}
$$

The function $\bar{G}_{\mathbb{S}}^{(n)}(t)$ has the following splitting form:

$$
\bar{G}_{\mathbb{S}}^{(n)}(t)=G_{\mathbb{S}}^{(n)}(t) \cdot \tilde{G}(t) \cdot t^{n},
$$

where

$$
\tilde{G}(t)=1+\tilde{G}_{\mathbb{S}}^{(n+1)}(t) t+\tilde{G}_{\mathbb{S}}^{(n+2)}(t) t^{2}+\tilde{G}_{\mathbb{S}}^{(n+3)}(t) t^{3}+\ldots
$$

for some finite Blaschke products $\tilde{G}_{\mathbb{S}}^{(n+i)}(t)$ with

$$
G_{\mathbb{S}}^{(n)}(t) \cdot \tilde{G}_{\mathbb{S}}^{(n+i)}(t)=G_{\mathbb{S}}^{(n+i)}(t)
$$

for all $i(i=1,2,3, \ldots)$. We show that the function $\tilde{G}(t)$ has no zero's in the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$. In fact, we have

$$
|\tilde{G}(t)| \geqq 1-\sum_{i=1}^{+\infty}|t|^{i}=\frac{1-2|t|}{1-|t|}>0
$$

for any t with $|t|<\frac{1}{2}$. This means that the decimal torsions $\tau(\mathbf{x})$ for all lattice points $\mathbf{x} \in \mathbb{S}^{(n)}$ except $\emptyset, \mathbf{0}$ and 1^{2} are characterized by the zero's of the function $\bar{G}_{\mathbb{S}}^{(n)}(t)$ in the interval $\left(-\frac{1}{2}, \frac{1}{2}\right) \backslash\{0\}$.

It is noted that the series function $G_{\mathbb{S}}(t)$ does not converge for $t= \pm 1$. This is because

$$
\lim _{n \rightarrow+\infty}\left|G_{\mathbb{S}}^{(n)}(\pm 1) \cdot(\pm 1)^{n}\right|=1 \neq 0
$$

The function $G_{\mathbb{S}}(t)$ is called the characteristic genus function defined for the PDelta subset \mathbb{S}. For example, for $\mathbb{S}=\{\emptyset, \mathbf{0}\}$, we have

$$
G_{\mathbb{S}}(t)=1+t+t^{2}+t^{3}+\cdots=\frac{1}{1-t}
$$

For $\mathbb{S}=\left\{\emptyset, \mathbf{0}, 1^{2}\right\}$, we have

$$
G_{\mathbb{S}}(t)=1+t-\left(t^{2}+t^{3}+t^{4}+\ldots\right)=1+t-\frac{t^{2}}{1-t}
$$

For a finite set \mathbb{S} with the maximal length n,

$$
G_{\mathbb{S}}(t)=\sum_{i=0}^{n-1} G_{\mathbb{S}}^{(i)}(t) t^{i}+G_{\mathbb{S}}^{(n)}(t) \frac{t^{n}}{1-t}
$$

For the subset $\mathbb{S}=\sigma\left(\mathbb{L}^{p}\right)$, we denote $G_{\mathbb{S}}^{(n)}(t)$ and $G_{\mathbb{S}}(t)$ by $G_{\mathbb{L}^{p}}^{(n)}(t)$ and $G_{\mathbb{L}^{p}}(t)$, respectively. The following corollary is direct from Theorem 5.1.

Corollary 5.2. The series function

$$
\begin{aligned}
G_{\mathbb{L}^{p}}(t)= & \sum_{n=0}^{+\infty} G_{\mathbb{L}^{p}}^{(n)}(t) t^{n} \\
= & 1+t-t^{2}-B\left(t, \frac{4}{9}\right) t^{3}-B\left(t, \frac{4}{9}\right) B\left(t, \frac{21}{64}\right) B\left(t, \frac{-15}{32}\right) t^{4} \\
& \quad-B\left(t, \frac{4}{9}\right) B\left(t, \frac{21}{64}\right) B\left(t, \frac{-15}{32}\right) B\left(t, \frac{156}{625}\right) B\left(t, \frac{-234}{625}\right) t^{5}+\ldots
\end{aligned}
$$

is a smooth real function defined on the interval $(-1,1)$ which is a characteristic invariant defined for the prime link set \mathbb{L}^{p}.

For example, let $\mathbb{L}(2, *)$ be the set of $(2, n)$-torus links regarding the $(2,0)$-torus link as the empty knot ϕ. Since

$$
\sigma(\mathbb{L}(2, *))=\left\{1^{n} \mid n=0,1,2,3, \ldots\right\}
$$

where $1^{0}=\phi, 1=0$ and $\tau\left(1^{n}\right)=\frac{1}{n-1}-\frac{1}{n^{n}-n^{n-1}}$ for $n \geqq 3$, we have:

$$
G_{\mathbb{L}(2, *)}(t)=1+t-t^{2}-\sum_{n=3}^{+\infty}\left(\prod_{k=3}^{n} B\left(t, \frac{1}{k-1}-\frac{1}{k^{k}-k^{k-1}}\right)\right) t^{n}
$$

For the subset $\mathbb{S}=\sigma_{\alpha}(\mathbb{M})$, we denote $G_{\mathbb{S}}^{(n)}(t)$ and $G_{\mathbb{S}}(t)$ by $G_{\mathbb{M}}^{(n)}(t)$ and $G_{\mathbb{M}}(t)$, respectively. Noting that the lattice point 1^{2} is excluded from $\sigma(\mathbb{M})$ (by the reason that the empty lattice point \emptyset is introduced), we have the following corollary obtained from Theorem 5.1.

Corollary 5.3. The series function

$$
\begin{aligned}
G_{\mathbb{M}}(t)= & \sum_{n=0}^{+\infty} G_{\mathbb{M}}^{(n)}(t) t^{n} \\
= & 1+t+t^{2}+B\left(t ; \frac{4}{9}\right) t^{3}+B\left(t ; \frac{4}{9}\right) B\left(t ; \frac{21}{64}\right) B\left(t ; \frac{-15}{32}\right) t^{4} \\
& \quad+B\left(t ; \frac{4}{9}\right) B\left(t ; \frac{21}{64}\right) B\left(t ; \frac{-15}{32}\right) B\left(t ; \frac{156}{625}\right) B\left(t, \frac{-234}{625}\right) t^{5}+\ldots
\end{aligned}
$$

is a smooth real function defined on the interval $(-1,1)$ which is a characteristic invariant defined for the 3-manifold set \mathbb{M}.

References

[1] J. S. Birman, Braids, links, and mapping class groups, Ann. Math. Studies, 82(1974), Princeton Univ. Press.
[2] W. Blaschke, Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen, Berichte Math.-Phys. Kl., Sächs. Gesell. der Wiss. Leipzig, 67(1915), 194-200.
[3] A. Kawauchi, A survey of knot theory, (1996), Birkhäuser.
[4] A. Kawauchi, Topological imitation of a colored link with the same Dehn surgery manifold, in: Proceedings of Topology in Matsue 2002, Topology Appl., 146-147(2005), 67-82.
[5] A. Kawauchi, A tabulation of 3-manifolds via Dehn surgery, Boletin de la Sociedad Matematica Mexicana (3), 10(2004), 279-304.
[6] A. Kawauchi and I. Tayama, Enumerating the prime knots and links by a canonical order, in: Proc. 1st East Asian School of Knots, Links, and Related Topics (Seoul, Jan. 2004), (2004), 307-316.
[7] A. Kawauchi and I. Tayama, Enumerating the exteriors of prime links by a canonical order, in: Proc. Second East Asian School of Knots, Links, and Related Topics in Geometric Topology (Darlian, Aug. 2005), (2005), 269-277.
[8] A. Kawauchi and I. Tayama, Enumerating prime links by a canonical order, Journal of Knot Theory and Its Ramifications, 15(2006), 217-237.
[9] A. Kawauchi and I. Tayama, Enumerating 3-manifolds by a canonical order, Intelligence of low dimensional topology 2006, Series on Knots and Everything, 40(2007), 165-172.
[10] A. Kawauchi and I. Tayama, Enumerating prime link exteriors with lengths up to 10 by a canonical order, Proceedings of the joint conference of Intelligence of Low Dimensional Topology 2008 and the Extended KOOK Seminar (Osaka, Oct. 2008), (2008), 135-143.
[11] A. Kawauchi and I. Tayama, Enumerating homology spheres with lengths up to 10 by a canonical order, Proceedings of Intelligence of Low-Dimensional Topology 2009 in honor of Professor Kunio Murasugi's 80th birthday (Osaka, Nov. 2009), (2009), 83-92.
[12] A. Kawauchi and I. Tayama, Enumerating 3-manifolds with lengths up to 9 by a canonical order, Topology Appl., 157(2010), 261-268.
[13] A. Kawauchi and I. Tayama, Representing 3-manifolds in the complex number plane, preprint. (http://www.sci.osaka-cu.ac.jp/~ kawauchi/index.htm)
[14] A. Kawauchi, I. Tayama and B. Burton, Tabulation of 3-manifolds of lengths up to 10, Proceedings of International Conference on Topology and Geometry 2013, joint with the 6th Japan-Mexico Topology Symposium, Topology and its Applications (to appear). http://dx.doi.org/10.1016/j.topol.2015.05.036
[15] B. von Kerékjártó, Vorlesungen über Topologie, Spinger, Berlin, 1923.
[16] R. Kirby, A calculus for framed links in S^{3}, Invent. Math., 45(1978), 35-56.
[17] J. Milnor and W. Thurston, Characteristic numbers of 3-manifolds, Enseignment Math., 23(1977), 249-254.
[18] Y. Nakagawa, A family of integer-valued complete invariants of oriented knot types, J. Knot Theory Ramifications, 10(2001), 1160-1199.
[19] S. Okazaki, On Heegaard genus, bridge genus and braid genus for a 3-manifold, J. Knot Theory Ramifications, 20(2011), 1217-1227.
[20] D. Rolfsen, Knots and links, (1976), Publish or Perish.

[^0]: ${ }^{2}$ Further restricted subsets of the present Delta set are called Delta sets in $[5,6,8,9,11$, 12, 14].

[^1]: ${ }^{3}$ This condition is imposed for simplicity.
 ${ }^{4}$ See Blaschke [2]. The author thanks to K. Sakan for suggesting the Blaschke product.

