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Abstract. A complete invariant defined for (closed connected orientable) 3-manifolds

is an invariant defined for the 3-manifolds such that any two 3-manifolds with the same

invariant are homeomorphic. Further, if the 3-manifold itself can be reconstructed from

the data of the complete invariant, then it is called a characteristic invariant defined

for the 3-manifolds. In a previous work, a characteristic lattice point invariant defined

for the 3-manifolds was constructed by using an embedding of the prime links into the

set of lattice points. In this paper, a characteristic rational invariant defined for the 3-

manifolds called the characteristic genus defined for the 3-manifolds is constructed by

using an embedding of a set of lattice points called the PDelta set into the set of rational

numbers. The characteristic genus defined for the 3-manifolds is also compared with the

Heegaard genus, the bridge genus and the braid genus defined for the 3-manifolds. By using

this characteristic rational invariant defined for the 3-manifolds, a smooth real function

with the definition interval (−1, 1) called the characteristic genus function is constructed

as a characteristic invariant defined for the 3-manifolds.

1. Introduction

It is classically well-known1 that every closed connected orientable surface F
is characterized by the maximal number, say n(= 0) of mutually disjoint simple
loops ωi (i = 1, 2, , n) in F such that the complement F \∪n

i=1ωi is connected. This
number n is called the genus of F . We consider the union L0 of n mutually disjoint
0-spheres S0

i (i = 1, 2, . . . , n) in the 2-sphere S2 (namely, the set of 2n points in S2)
as an S0-link with n components. Then the surface characterization stated above
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is dual to the statement that the surface F of genus n is obtained as the 1-handle
surgery manifold χ(L0) of S2 along an S0-link L0 with n components. Let M2 be
the set of (the unoriented types of) closed connected orientable surfaces, and L0 the
set of (unoriented types of) S0-links. Since any two S0-links with the same number
of components belong to the same type, we have a well-defined bijection

α0 : M2 → L0

sending a surface F ∈ M2 to an S0-link L0 ∈ L0 such that χ(L0) = F . Further, let
X0 be the set of non-negative integers, and G0 the set of (the isomorphism classes
of) “the link groups”π1(S

2 \L0) of all S0-links L0 ∈ L0. Then we have further two
natural bijections

σ0 : L0 → X0, π0 : L0 → G0

such that σ0(L0) = n and π0(L0) = π1(S
2\L0) for an S0-link L0 with n components,

respectively, so that we have the composite bijections

g0 = σ0
α = σ0α0 : M2 → X0, π0

α = π0α0 : M2 → G0.

For every surface F ∈ M2, the number g0(F ) = n is equal to the genus of F ,
and the group π0

α(F ) is a free group of rank 2n−1 (if n = 1) or the trivial group {1}
(if n = 0). Thus, the genus g0(F ) determines the S0-link α0(F ), the group π0

α(F )
and the surface F itself. As we discussed in the paper [5], an analogous argument
is possible for closed connected orientable 3-manifolds, although the existence of
non-trivial links in the 3-sphere S3 makes the classification complicated. Here, for
convenience we explain an idea of this argument of [5] briefly. Let M be the set of
(unoriented types of) closed connected orientable 3-manifolds. Let L be the set of
(unoriented types of) links in S3 (including the knots as one-component links). A
lattice point of length n is an element x of Zn for the natural number n where Z
denotes the set of integers.

In this paper, the empty lattice point ϕ of length 0 and the empty knot ϕ are
also considered. Let X be the set of all lattice points. We have a canonical map

clβ : X → L

sending a lattice point x to a closed braid diagram clβ(x), which is surjective by the
Alexander theorem (cf. J. S. Birman [1]). It was shown in [5] that every well-order
of the set X induces an injection

σ : L → X

which is a right inverse of the map clβ. In particular, by taking the caninical well-
order which is explained in § 2, we consider the subset Lp ⊂ L consisting of prime
links as a well-ordered set with the order inherited from X by σ, where the two-
component trivial link is excluded from Lp. The length ℓ(L) of a prime link L ∈ Lp

is the length ℓ(σ(L)) of the lattice point σ(L). Let G be the set of (isomorphism
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types of) the link groups π1(S
3 \L) for all links L in S3. Let π : L → G be the map

sending a link L to the link group π1(S
3 \L). Let Lπ be the subset of Lp consisting

of a π-minimal link, that is, a prime link L such that L is the initial element of the
subset

{L′ ∈ Lp|π1(S3 \ L′) = π1(S
3 \ L)}.

We are interested in this subset Lπ because it has a crucial property that the
restriction of π to Lπ is injective. Since the restriction of σ to Lπ is also injective,
we can consider Lπ as a well-ordered set by the order induced from the order of X.
In [4], we showed that the set

Lπ(M) = {L ∈ Lπ|χ(L, 0) =M}

is not empty for every 3-manifold M ∈ M, where χ(L, 0) denotes the 0-surgery
manifold of S3 along L and we define χ(L, 0) = S3 when L is the empty knot ϕ. By
R. Kirby’s theorem [16] on the Dehn surgeries of framed links, we note that the set
Lπ(M) is defined in terms of only links so that any two π-minimal links in Lπ(M)
are related by two kinds of Kirby moves and choices of orientations of S3. Sending
every 3-manifold M to the initial element of Lπ(M) induces an embedding

α : M → L

with χ(α(M), 0) = M for every 3-manifold M ∈ M, which further induces two
embeddings

σα = σα : M → X, πα = πα : M → G.

By a special featur of the 0-surgery, the S0-link α(M)∩S2 in S2 produces a surface
χ(α(M) ∩ S2) naturally embedded in M with α0(χ(α(M) ∩ S2)) = α(M) ∩ S2 for
every 2-sphere S2 in S3 meeting the link α(M) transversely. In this sense, the
embedding α is an extension of the embedding α0. In this construction, we can
reconstruct the link α(M), the group πα(M) and the 3-manifold M itself from the
lattice point σ(M) ∈ X. Thus, we have constructed the embeddings σ, σα and
πα analogous to the embeddings σ, σα and πα, respectively. The length ℓ(M) of
a 3-manifold M ∈ M is the length ℓ(σα(M)) of the lattice point σα(M). In [14],
the 3-manifolds of lengths 5 10 are classified (see also [9, 11, 12]). In this process,
the prime links and their exteriors of lengths 5 10 have been earlier classified (See
[6, 7, 8, 10]). In general, an invariant Inv defined for a family of topological objects
is complete if any two members A and A′ with Inv(A) = Inv(A′) are homeomorphic.
The complete invariant Inv(A) is a characteristic invariant if the object A can be
reconstructed from data of Inv(A). For example, the group invariant πα(M) is a
complete invariant defined for the 3-manifolds M ∈ M taking the value in finitely
presented groups and the lattice point σα(M) is a characteristic invariant defined
for the 3-manifoldsM ∈ M taking the value in lattice points. For an interval I ⊂ R,
we put IQ = I ∩ Q, where R and Q denote the sets of real numbers and rational
numbers, respectively.
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In this paper, we consider a lattice point set P∆ called the PDelta set such that

σα(M) ⊂ σ(Lp) ⊂ P∆ ⊂ X.

An embedding g : P∆ → [0,+∞)Q called the characteristic genus is constructed so
that the image g(S) of every subset S ⊂ P∆ containing the empty lattice point ∅
and the zero lattice point 0 ∈ Z (called a PDelta subset) is a characteristic invariant
defined for the set S. By taking S = σ(Lp), the characteristic genus g(L) defined
for the prime links L ∈ Lp is obtained. By taking S = σα(M), the characteristic
genus g(M) defined for the 3-manifolds M ∈ M is obtained.

An explanation of the PDelta set is made in § 2. A construction of the em-
bedding g is done in § 3. In § 4, some properties of the characteristic genera of
the 3-manifolds are stated together with the calculation results of the 3-manifolds
of lengths 5 7. In particular, the characteristic genus g(M) for a 3-manifold M is
compared with the Heegaard genus gh(M), the bridge genus gb(M) and the braid
genus gbr(M). In § 5, from the characteristic genus g, we construct a smooth real
function GS(t) with the definition interval (−1, 1) for every PDelta subset S which
is a characteristic invariant defined for the set S. By taking S = σ(Lp), the charac-
teristic prime link function GLp(t) is obtained as a characteristic invariant defined
for the prime link set Lp. By taking S = σα(M), the characteristic genus function
GM(t) is obtained as a characteristic invariant defined for the 3-manifold set M.

Concluding this introductory section, we mention here some analogous invari-
ants derived from different viewpoints. Y. Nakagawa defined in [18] a family of
integer-valued characteristic invariants of the set of knots by using R. W. Ghrist’s
universal template (although a generalization to oriented links appears difficult).
Also, J. Milnor and W. Thurston defined in [17] a non-negative real-valued invari-
ant defined for the closed connected 3-manifolds with the property that if Ñ → N
is a degree n(= 2) connected covering of a closed connected 3-manifold N , then the
invariant of Ñ is n times the invariant of N , so that it does not classify lens spaces.

2. The Range of the Prime Links in the Set of Lattice Points

To investigate the image σ(Lp) ⊂ X, we need some notations on lattice points
in [5, 6, 7, 8, 9, 10, 11, 12, 14]. For a lattice point x = (x1, x2, . . . , xn) of length
ℓ((x) = n, we denote the lattice points (xn, . . . , x2, x1) and (|x1|, |x2|, . . . , |xn|) by
xT and |x|, respectively. Let |x|N be a permutation (|xj1 |, |xj2 |, . . . , |xjn |) of the
coordinates |xj | (j = 1, 2, . . . , n) of |x| such that

|xj1 | 5 |xj2 | 5 · · · 5 |xjn |.

Let min |x| = min15i5n |xi| and max |x| = max15i5n |xi|. The dual lattice point of

x is given by δ(x) = (x′1, x
′
2, . . . , x

′
n) where x′i = sign(xi)(max| x| + 1 − |xi|) and

sign(0) = 0 by convention.
Defining δ0(x) = x and δn(x) = δ(δn−1(x)) inductively, we note that δ2(x) ̸= x

in general, but δn+2(x) = δn(x) for all n = 1. For a lattice point y = (y1, y2, . . . , ym)
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of length m, we denote by (x,y) the lattice point

(x1, x2, . . . , xn, y1, y2, . . . , ym).

of length n +m. For an integer m and a natural number n, we denote by mn the
lattice point (m,m, . . . ,m) of length n. Also, we take −mn = (−m)n. A reason
why we do not consider L but Lp is because we can use the following lemma which
is shown in [5]:

Lemma 2.1. We have clβ(x) = clβ(y) in L modulo split additions of trivial links if
and only if y is obtained from x by a finite number of the following transformations:

(1) (x, 0) ↔ x.

(2) (x,y,−yT ) ↔ x.

(3) (x, y) ↔ x when |y| > max |x|.
(4) (x,y, z) ↔ (x, z,y) when min |y| > max |z|+ 1 or min |z| > max |y|+ 1.

(5) (x,±y, y + 1, y) ↔ (x, y + 1, y,±(y + 1)) when y(y + 1) ̸= 0.

(6) (x,y) ↔ (y,x).

(7) x ↔ xT ↔ −x ↔ −xT .

(8) x ↔ x′ when clβ(x) is a disconnected link and clβ(x′) is obtained from clβ(x)
by changing the orientation of a component of clβ(x).

There is an algorithm to obtain clβ(x′) from clβ(x) in (8).

The canonical order of X is a well-order determined as follows: Namely, the
well-order in Z is defined by 0 < 1 < −1 < 2 < −2 < 3 < −3 < . . . , and this order
of Z is extended to a well-order in Zn for every n = 2 so that for x1,x2 ∈ Zn we
define x1 < x2 if we have one of the following conditions (1)-(3):

(1) |x1|N < |x2|N by the lexicographic order (on the natural number order).

(2) |x1|N = |x2|N and |x1| < |x2| by the lexicographic order (on the natural number
order).

(3) |x1| = |x2| and x1 < x2 by the lexicographic order on the well-order of Z defined
above.

Finally, for any two lattice points x1,x2 ∈ X with ℓ(x1) < ℓ(x2), we define x1 < x2.

For a subset S ⊂ X and a non-negative integer n, let

S(n) = {x ∈ S| ℓ(x) 5 n}

and call it the n-fragment of S.
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The Delta set is the subset ∆ of X consisting of ∅,0 and all lattice points x of
lengths n = 2 satisfying x1 = 1 and

1 5 minx 5 max |x| 5 n

2
.2

An important property of the Delta set ∆ is that the n-fragment ∆(n) of the
Delta set ∆ is a finite set for every non-negative integer n.

In our argument, the special lattice point an of length n defined for every even
integer n = 2m = 4 is important. This lattice point an is defined inductively as
follows: Let a4 = (1,−2, 1,−2). Assuming that an = (a′n, (−1)m−1m) is defined,
we define

an + 2 = (a′n, (−1)m(m+ 1), (−1)m−1m, (−1)m(m+ 1)).

It is noted that the nth coordinate of an is (−1)m−1m and clβ(an) is a 2-bridge
knot or a 2-bridge link according to whether m is even or odd, respectively. The
PDelta set P∆ is the subset of the Delta set ∆ consisting of

∅,0, 12,an (for any evenn = 4)

and all lattice points x of lengths n = 3 satisfying x1 = 1 and

1 5 min |x| 5 max |x| < n

2
.

A sublattice point of a lattice point x is a lattice point x′ such that x = (u,x′,v)
for some lattice points u,v (which may be the empty lattice point). When we write
|x|N = (1e1 , 2e2 , . . . ,mem) for m = max |x|, the non-negative integer ek is called the
exponent of k in x and denoted by expk(x).

The DeltaStar set ∆∗ is the subset of P∆ consisting of

∅,0, 1n (for anyn = 2),an (for any evenn = 4)

and all the lattice points x = (x1, x2, . . . , xn) (n = 5) which have all the following
conditions (1)-(8):

(1) x1 = 1, 2 5 |xn| 5 max |x| < n
2 .

(2) expk(x) = 2 for every k with 1 5 k 5 max |x|.
(3) Every lattice point obtained from x by permuting the coordinates of x cyclically
is not of the form (x′,x′′) where 1 5 max |x′| < min |x′′|.
(4) For every i < n, one of the following identities or inequality holds: |xi| − 1 =
|xi+1|, xi = xi+1 or |xi| < |xi+1|.

2Further restricted subsets of the present Delta set are called Delta sets in [5, 6, 8, 9, 11,
12, 14].
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(5) For a sublattice point x′ of x such that |x′| = (k, (k+1)e, k) and expk x = 2 for
some k, e = 1 or such that |x′| = (ke, k+1, k) or (k, k+1, ke) and expk(x) = e+1 for
some k, e = 1, then x′ = ±(k,−ε(k+1)e, k), ±(εke,−(k+1), k) or±(k,−(k+1), εke)
for some ε = ±1, respectively. Further, if e = 1, then ε = 1.

(6) For a sublattice point x′ of x with |x′| = (k + 1, ke, k + 1) for some k, e = 1,
then x′ = ±(k + 1, εke, k + 1) for some ε = ±1. Further if e = 1, then ε = −1.

(7) x is the initial element of the set of the lattice points obtained from every lattice
point of ±x, ±xT , ±δ(x) and ±δ(x)T by permuting the coordinates cyclically.

(8) |x| is not of the form (|x′|, k + 1, k, (k + 1)e, k) or (|x′|, k + 1, k2, k + 1, k) for
e = 1, k = 2 and max |x′| 5 k.

The following lemma is important to our argument:

Lemma 2.3. σα(M) ⊂ σ(Lp) ⊂ ∆∗ ⊂ P∆.

This lemma means that the collections of the links clβ(x) and the 3-manifolds
χ(clβ(x, 0) for all lattice points x ∈ P∆ contain all the prime links and all the
3-manifolds, respectively.

Proof of Lemma 2.3. In [5], the inclusions σα(M) ⊂ σ(Lp) ⊂ ∆ are shown
except counting the property (8). In [8, Lemma 3.6], we showed that σ(Lp) has
(8). Then to complete the proof, it is sufficient to show that if x ∈ σ(Lp) has
ℓ(x) = n = 4 and max |x| = n

2 , then we have x = an. Since x is in ∆, we
see that |x|N = (12, 22, . . . ,m2). By the transformations (1)-(7) in Lemma 2.1,
we see that unless |x| = |an|, we can transform x into a smaller lattice point x′.
Then considering x itself, we conclude that unless x = an, the lattice point x is
transformed into a smaller lattice point x′′.

The DeltaStar set ∆∗ approximates the prime link lattice point set σ(Lp), but
they are different. For example, the lattice point (12, 2,−12, 2) ∈ ∆∗ does not belong
to the prime link subset σ(Lp). In fact, the prime link L = clβ(12, 2,−12, 2) = 633
appears as a smaller lattice point (12, 2, 12, 2) in the tables of [5, 8, 12, 14].

3. Embedding the PDelta Set into the Set of Rational Numbers

For a lattice point x = (x1, x2, . . . , xn) ∈ P∆ with n = 2, we define the rational
numbers

τ(x) =
1

nn−1
(x2 + x3n+ · · ·+ xnn

n−2),

g(x) = n+ τ(x).

For example, we have

τ(12) =
1

2
, g(12) = 2 +

1

2
.
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By convention, we put:

τ(∅) = g(∅) = 0, τ(0) = 0, g(0) = 1.

The rational number g(x) is called the characteristic genus or simply the genus
of x, and τ(x) the decimal part of the characteristic genus g(x) or the decimal
torsion of x. According to whether the last coordinate xn is positive or negavtive,
the lattice point x is called to be ending-positive or ending-negative, respectively.
We show the following theorem:

Theorem 3.1. The map x 7→ g(x) induces an embedding

g : P∆ → [0,+1)Q

such that for every x = (x1, x2, . . . , xn) ∈ P∆ with n = 3 we have the following
properties (1)-(3):

(1) According to whether x is ending-positive or ending-negative, we have respec-
tively

g(x) ∈ (n, n+
1

2
)Q or g(x) ∈ (n− 1

2
, n)Q

In particular, the length ℓ(x) is equal to the maximal integer not exceeding the
number g(x) + 1

2 .

(2) The lattice point x ∈ P∆ is reconstructed from the value of g(x).

(3) There are only finitely many x ∈ P∆ with

g(x) ∈ (n− 1

2
, n+

1

2
)Q.

Here is a note on the values on ∅, 0 and 12.

Remark 3.2. The values τ(∅) = g(∅) = 0, τ(0) = 0 and g(0) are not definite
values. For example, As another choice, by a geometric meaning on the braids, the
zero lattice point 0 may be considered as the lattice point (1,−1) where the values
τ(1,−1) = −1

2 and g(1,−1) = 2 − 1
2 = 1 + 1

2 are taken. On the other hand, the
lattice points (1,−1) and 12 are considered as exceptional ones in the sense that
the characteristic genus does not determine the decimal torsion uniquely as follows:

g(1,−1) = 2− 1

2
= 1 +

1

2
and g(12) = 2 +

1

2
= 3− 1

2
.

Proof of Theorem 3.1. To show the first half of (1), first consider a lattice point
x ∈ P∆ with |xi| < n

2 for all i. Then we have |xi| 5 n−1
2 and

|τ(x)− xn
n
| 5 n− 1

2
· 1

nn−1
(1 + n+ · · ·+ nn−3)

=
n− 1

2
· 1

nn−1
· n

n−2 − 1

n− 1

1

2
(
1

n
− 1

nn−1
) <

1

2n
.
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Hence

− 1

2n
< τ(x)− xn

n
<

1

2n
.

Since xn ̸= 0, this shows the assertion of (1) except for the lattice points an. Let
an = (a1, a2, . . . , an). It is directly checked that |g(an)−n| < 1

2 and |τ(an)− an

n | <
1
2n for n = 4. Let n = 6 be even. Since |ai| < n

2 for all i except |an−2| = |an| = n
2

and |an−1| = n−2
2 , we have

|τ(an)−
(an−2

n3
+
an−1

n2
+
an
n

)
| 5 n− 1

2
· 1

nn−1

(
1 + n+ · · ·+ nn−5

)
=
n− 1

2
· 1

nn−1
· n

n−4 − 1

n− 1
=

1

2n3
− 1

2nn−1
<

1

2n3
.

For the sign ε of an, we have

an−2

n3
+
an−1

n2
+
an
n

= ε(
1

2n2
− n− 2

2n2
+

1

2
=
ε(n− 1)(n+ 1)

2n2
,

so that

− 1

2n3
< τ(an)−

ε(n− 1)(n+ 1)

2n2
<

1

2n3
.

This shows that the assertion of (1) holds for the lattice points an.
To show that g is an embedding, let ℓ(x) = n = 3. Then g(x) is distinct from

g(∅) = 0, g(0) = 1 and g(12)1 + 1
2 . If the value of g(x) is given, then the length

n(= 3) of x is uniquely determined by (1). For x′ = (x′1, x
′
2, . . . , x

′
n) ∈ P∆, assume

that

g(x) = g(x′) = n+
x′2
nn−1

+ · · ·+ x′n
n
.

If max |x| < n
2 or max |x′| < n

2 , then we have inductively

x′i − xi ≡ 0 (mod n) and |x′i − xi| 5 |x′i|+ |xi| <
n

2
+
n

2
= n

for all i (i = 1, 2, . . . , n). Thus, we must have x′i − xi = 0 (i = 1, 2, . . . , n) and
x = x′. If max |x| = n

2 or max |x′| = n
2 , then we obtain by definition and the

argument above x = x′ = an, showing (2). Since there are only finitely many
lattice points with length n in P∆, we have (3) by(1).

The decimal torsion and the characteristic genus of a prime link L ∈ Lp is
defined to be τ(L) = τ(σ(L)) and g(L) = g(σ(L)), respectively. Then g(L) =
ℓ(L) + τ(L). For the empty knot ϕ, the trivial knot O and the Hopf link 221, we
have

τ(ϕ) = g(ϕ) = 0, τ(O) = 0, g(O) = 1, τ(221) =
1

2
, g(221) = 2 +

1

2
.

Further, for every prime link L with ℓ(L) = 3, we have

g(L) ∈ (ℓ(L)− 1

2
, ℓ(L) +

1

2
)Q
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by Theorem 3.1. The decimal torsion and the characteristic genus of a 3-manifold
M ∈ M is defined to be τ(M) = τ(σα(M)) and g(M) = g(σα(M)), respectively,
whose properties will be discussed in § 4.

It is also noted that there are many embeddings similar to g. For example, for
a lattice point x = (x1, x2, . . . , xn) ∈ ∆, we define the rational number

g′(x) = n+
x2

(n+ 1)n−1
+ · · ·+ xn

n+ 1
.

By convention, we have g′(∅) = 0 and g′(0) = 1. The following embedding result is
essentially a consequence of Theorem 3.1 and observed earlier in [8] (, although the
Delta set was taken as a smaller set).

Corollary 3.3. The map x 7→ g′(x) induces an embedding

g′ : ∆ → [0,+1)Q

such that for every x = (x1, x2, . . . , xn) ∈ ∆ with n = 2 we have the following
properties (1)-(3):

(1) |g′(x)− n| < 1
2 .

(2) The lattice point x ∈ ∆ is reconstructed from the value of g′(x).
(3) There are only finitely many x ∈ ∆ with

g′(x) ∈ (n− 1

2
, n+

1

2
)Q.

In fact, this corollary is shown by an analogous argument of Theorem 3.1 taking
a lattice point x of length n as a lattice point (x, 0) of length n+ 1. Our argument
also goes well by using Corollary 3.2, but there is a demerit that the denominator
of the rational value becomes further large.

In the forthcoming paper [13], a joint work with T. Tayama, a subset of the Delta
set ∆, called the ADelta set A∆ which is different from the PDelta set P∆ discussed
here, is discussed as a complex number version of this paper by representing every
lattice point of A∆ in the complex number plane with norm smaller than or equal
to 1

2 .

4. Properties of the Characteristic Genus of a 3-Manifold
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Table 4.1: The characteristic genera of 3-manifolds with lengths up to 7

M x g
M0,1 = χ(ϕ, 0) = S3 ϕ 0

M1,1 = χ(O, 0) = S1 × S2 0 1
M3,1 = χ(31, 0) 13 3 + 4

9 = 3.44444444 . . .
M4,1 = χ(421, 0) 14 4 + 21

64 = 4.328125
M4,2 = χ(41, 0) (1,−2, 1,−2) 4− 15

32 = 3.53125
M5,1 = χ(51, 0) 15 5 + 156

625 = 5. . . .
M5,2 = χ(521, 0) (12,−2, 1,−2) 5− 234

625 = 4. . . .
M6,1 = χ(621, 0) 16 6 + 1555

7776 = 6.199974279
M6,2 = χ(52, 0) (13, 2,−1, 2) 6 + 2455

7776 = 6.31571502 . . .
M6,3 = χ(62, 0) (13,−2, 1,−2) 6− 2441

7776 = 5.68608539 . . .
M6,4 = χ(633, 0) (12, 2, 12, 2) 6 + 2857

7776 = 6.367412551 . . .
M6,5 = χ(631, 0) (12,−2, 12,−2) 6− 2351

7776 = 5.697659465 . . .
M6,6 = χ(63, 0) (12,−2, 1,−22) 6− 2999

7776 = 5.614326131 . . .
M6,7 = χ(632, 0) (1,−2, 1,−2, 1,−2) 6− 611

1944 = 5.685699588 . . .
M6,8 = χ(623, 0) (1,−2, 1, 3,−2, 3) 6 + 223

486 = 6.458847736 . . .
M7,1 = χ(71, 0) 17 7 + 19608

117649 = 7.16666525
M7,2 = χ(622, 0) (14, 2,−1, 2) 7 + 31956

117649 = 7.271621518 . . .
M7,3 = χ(721, 0) (14,−2, 1,−2) 7− 31842

117649 = 6.729347465 . . .
M7,4 = χ(724, 0) (13,−2, 12,−2) 7− 30960

117649 = 6.736844342 . . .
M7,5 = χ(722, 0) (13,−2, 1,−22) 7− 38163

117649 = 6.675619852 . . .
M7,6 = χ(725, 0) (12,−2, 12,−22) 7− 38037

117649 = 6.676690834 . . .
M7,7 = χ(726, 0) (12,−2, 1,−2, 1,−2) 7− 31863

117649 = 6.729168968 . . .
M7,8 = χ(61, 0) (12, 2,−1,−3, 2,−3) 7− 46682

117649 = 6.603209548 . . .
M7,9 = χ(76, 0) (12,−2, 1, 3,−2, 3) 7 + 46684

117649 = 7.396807452 . . .
M7,10 = χ(77, 0) (1,−2, 1,−2, 3,−2, 3) 7 + 46555

117649 = 7.39571097 . . .
M7,11 = χ(731, 0) (1,−2, 1, 3,−22, 3) 7 + 45085

117649 = 7.383216176 . . .

By the classification of [5], if ℓ(M) = 1, 2, then we have M = S1 × S2, S3,
respectively. The reason why S3 occurs by ℓ(M) = 2 is because we take S3 as the
0-surgery manifold of S3 along the Hopf link 221 and we have σα(S

3) = 12. However,
we can also take S3 as the 3-manifold without 0-surgery of S3 along a link. This
is the reason why the empty lattice point ∅ ∈ P∆ ⊂ X of length 0 and the empty
knot ϕ ∈ Lp with bridge index 0 are introduced.We assume

α(S3) = ϕ, σα(S
3) = ∅, ℓ(∅) = 0, g(∅) = 0,

so that g(S3) = 0. Also, we have the group invariant πα(S
3) = {1} by introducing

the trivial group {1} to the set G of link groups. Under this consideration, there is
no 3-manifold M ∈ M with ℓ(M) = 2. Since σα(M) ⊂ P∆ and the n-fragment of
P∆ for every n is a finite set, there are only finitely many 3-manifolds with length
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n for every n = 0. According to the canonical well-order of X, the 3-manifolds of
length n = 1 are enumerated as follows:

Mn,1 < Mn,2 < · · · < Mn,mn

for a non-negative integer mn depending only on n. By the introduction of the
empty knot ϕ ∈ Lp, we put M0,1 = S3. By [5], we reconstruct from the lattice
point σα(Mn,i) the link α(Mn,i) ∈ Lp, the group πα(Mn,i) ∈ G and the 3-manifold
Mn,i itself. By (2) of Theorem 3.1, we reconstruct the lattice point σα(Mn,i) from
the characteristic genus g(Mn,i), so that we can construct from g(Mn,i) the lattice
point σα(Mn,i), the link α(Mn,i), the group πα(Mn,i) and the 3-manifoldMn,i itself.

In [KTB] the lattice points of the 3-manifolds Mn,i together with the geometric
structures for all n 5 10 are listed. In the following table, the characteristic genera
g(Mn,i) for all n 5 7 are given together with the data of the lattice point σα(Mn,i)
and the link α(Mn,i) identified with a knot or a link in D. Rolfsen’s table [20], where
it is noted that there is no 3-manifold of length 2 by the reason stated above and
at this point the table is different from the tables of [5, 11, 12, 14].

For every 3-manifold M ∈ M with M ̸= S3, S1 × S3, we have ℓ(M) = 3. Every
3-manifold M ∈ M has a Heegaard splitting, i.e., a union of two handlebodies by
pasting along the boundaries. The Heegaard genus, gh(M) of M is the minimum of
the genera of such handlebodies. The following lemma gives a relationship between a
bridge presentation of a link L ∈ L (see [3] for an explanation of bridge presentation)
and Heegaard splittings of the Dehn surgery manifolds along L.

Lemma 4.2. Let a link L ∈ L have a g-bridge presentation. Then every Dehn
surgery manifold M of S3 along L admits a Heegaard splitting of genus g.

Proof. Since S3 is a union of two 3-balls B,B′ pasting along the boundary spheres
such that T = L ∩B and T ′ = L ∩B′ are trivial tangles of g proper arcs in B and
B′, respectively. Let N(T ) be a tubular neighborhood of T in B, V = cl(B \N(T )),
and V ′ = B′ ∪N(T ). By construction, V and V ′ are handlebodies of genus g and
forms a Heegaard splitting of S3. To complete the proof, it suffices to show that the
Dehn surgery from S3 to M along L just changes V ′ into another handlebody V ′′,
so that V and V ′′ forms a Heegaard splitting of M of genus g. Since T ′ is a trivial
tangle in B′ of g proper arcs, there are g− 1 proper disks Di (i = 1, 2, . . . , g− 1) in
B′ which split B′ into a 3-manifold regarded as a tubular neighborhood N(T ′) of T ′

in B′. Then the union N(L) = N(T )∪N(T ′) is regarded as a tubular neighborhood
of L in S3. The Dehn surgery from S3 to M along L just changes N(L) into the
union of solid tori obtained from N(L) by the Dehn surgery without changing the
boundary ∂N(L). Thus, we obtain the desired handlebody V ′′ by pasting along the
disks corresponding to Di (i = 1, 2, . . . , g − 1).

Let gb(M) and gbr(M) denote respectively the bridge genus and the braid genus
ofM , namely the minimal bridge index and the minimal braid index for links whose
0-surgery manifolds are M . We define gb(S

3) = gbr(S
3) = 0 by considering that

S3 is obtained from S3 by the 0-surgery along the empty knot ϕ. The 3-manifold
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M with ℓ(M) = 3 is ending-positive or ending-negative, respectively, according to
whether σα(M) is ending-positive or ending-negative. Then we have the following
lemma:

Lemma 4.3. For every M ∈ M with ℓ(M) = 3, we have

2gh(M)− 2 5 2gb(M)− 2 5 2gbr(M)− 2 5 ℓ(M) < g(M) + end(M),

where end(M) is 0 or 1
2 , respectively, according to whether M is ending-positive or

ending-negative.

Proof. By Lemmas 2.3 and 4.2, we have

gh(M) 5 gb(M) 5 gbr(M) 5 ℓ(M)

2
+ 1.

By Theorem 3.1 (1), according to whether M is ending-positive or ending-negative,
the inequality ℓ(M) < g(M) or ℓ(M) < g(M) + 1

2 holds, respectively, from which
the result follows.

We show the following theorem:

Theorem 4.4. The characteristic genus g(M) of every M ∈ M is a characteristic
invariant defined for M such that

gh(S
3) = gb(S

3) = gbr(S
3) = g(S3) = ℓ(S3) = 0,

gh(S
1 × S3) = gb(S

1 × S3) = gbr(S
1 × S3) = g(S1 × S3) = ℓ(S1 × S3) = 1

and every M ∈ M withM ̸= S3, S1 × S3 has the following properties:

(1) The 3-manifold M itself, the lattice point σα(M), the link α(M) and the group
πα(M) are reconstructed from the value of g(M).

(2) According to whether M is ending-positive or ending-negative, the characteristic
genus g(M) belongs to (n, n+ 1

2 )Q or (n− 1
2 , n)Q for n = ℓ(M).

(3) There are only finitely many 3-manifolds M ∈ M such that

g(M) ∈ (n− 1

2
, n+

1

2
)Q.

(4) The inequalities

2gh(M)− 2 5 2gb(M)− 2 5 2gbr(M)− 2 5 ℓ(M) < g(M) + end(M)

hold, where end(M) is 0 or 1
2 , respectively, according to whetherM is ending-positive

or ending-negative.

Proof. By definition, we have the values of S3 and S1 × S2.By the property of σα
in [5] and Theorem 3.1, it is seen that g(M) is a characteristic rational invariant
defined for M and the properties (1)-(3) hold. (4) is obtained in Lemma 4.3.
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The following corollary is direct from Theorem 4.5 (3).

Corollary 4.5. For any infinite subset M′ ⊂ M, we have

sup{ℓ(M)|M ∈ M′} = +∞.

For every integer n > 1, since there are infinitely many 3-manifolds M ∈ M
with gbr(M) 5 n, we see from Corollary 4.5 that there are lots of 3-manifolds
M ∈ M such that the difference ℓ(M)− gbr(M) is sufficiently large. However, exact
calculations of the invariants gb(M), gbr(M), ℓ(M) for most 3-manifolds are not
known and remain as an open problem. Here are some elementary examples.

Example 4.6. (1) LetM = χ(31, 0) =M3,1 for the trefoil knot 31. Since the braid
index of 31 is 2 and M is not the lens space, we see from Table 4.1 that

gh(M) = gb(M) = gbr(M) = 2 <
ℓ(M)

2
+ 1 = 2.5 and g(M) = 3 +

4

9
= 3.444 . . . .

(2) Let M = χ(421, 0) =M4,1 for the (2, 4)-torus link 421. Since the braid index of 421
is 2 and the first integral homology H1(M) has exactly 2 generators, we see from
Table 4.1 that

gh(M) = gb(M) = gbr(M) = 2 <
ℓ(M)

2
+ 1 = 3 and g(M) = 4 +

21

64
= 4.328 . . . .

(3) Let M = χ(41, 0) = M4,2 for the figure eight knot 41. Since the bridge index
of 41 is 2 and M is not any lens space, we see that gh(M) = gb(M) = 2. If M is
obtained from a knot or link of braid index 2, then M would be obtained from a
(2k+1)-half-twist knot K(k) by 0-surgery. However, this is impossible because the
Alexander polynomial of the homology handles M and M(k) = χ(K(k), 0) are

AM (t) = t2 − 3t+ 1, AM(k) =
t2k+1 + 1

t+ 1

and they are distinct. These results and Table 4.1 mean that

gh(M) = gb(M) = 2 < gbr(M) =
ℓ(M)

2
+ 1 = 3 < g(M) = 4− 15

32
= 3.531 . . . .

We note here that the bridge genus behaves differently from the Heegaard genus,
although gh(M) = gb(M) in Example 4.6. For example, if M is a lens space
except S3 and S1 × S2, then we have gb(M) = 3 whereas gh(M) = 1. In fact,
the first homology H1(M) is a non-trivial finite cyclic group. Onthe other hand, if
1 5 gb(M) 5 2, then H1(M) would be isomorphic to the infinite cyclic group Z or a
direct double Z/mZ⊕ Z/mZ for some m = 0, which is a contradiction. Concretly,
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the pro—ective 3-space M = P 3 has σα(M) = (12, 2, 12, 2) (see [5, 14]) and hence
gb(M) = 3. By developing a similar consideration, S. Okazaki[19] has observed a
linear independence on the Heegaard genus gh(M), the bridge genus gb(M) and the
braid genus gbr(M).

5. Constructing a Characteristic Smooth Real Function Defined for the
PDelta Set

A PDelta subset is a subset S of the PDelta set P∆ containing the lattice points
∅ and 03. Let a and t be real numbers such that either −1 5 a 5 1 and −1 < t < 1
or −1 < a < 1 and −1 5 t 5 1. Then the linear fraction

B(t; a) =
t− a

1− at

is considered. If |t| < 1 and |a| < 1, then |B(t; a)| < 1, because we have

1− |B(t; a)|2 =
(1− t2)(1− a2)

(1− at)2
.

If |a| = 1 or |t| = 1, then it is easily checked that |B(t; a)| = 1. In fact, we have
B(t;±1) = B(∓1, a) = ∓1.

Noting that the decimal torsions of ∅, 0 and 12 are not definite values as it is
explained in Remark 3.2, we put the following definition for any x ∈ P∆:

Gx(t) =

 B(t; τ(x)) (ℓ(x) = 3)
B(t; 1) = −1 (x = 12)
B(t;−1) = 1 (x = ∅, 0)

For every n-fragment S(n) of a PDelta subset S ⊂ P∆, the function

G
(n)
S (t) =

∏
x∈S(n)

Gx(t)

is called a finite Blaschke product4 whose zero’s are precisely the decimal torsions
τ(x) for all x ∈ S(n) except ∅,0 and 12. By the assumption of the set S, we have

G
(0)
S (t) = G

(1)
S (t) = 1.

Further, according to whether the lattice point 12 belongs to S or not, we have

G
(2)
S (t) = −1 or 1, respectively. For example, when we take S = Lp, the functions

G
(n)
Lp (t) for n = 0, 1, 2, 3, 4, 5 are calculated as follows:

3This condition is imposed for simplicity.
4See Blaschke [2]. The author thanks to K. Sakan for suggesting the Blaschke product.
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G
(0)
Lp (t) = 1,

G
(1)
Lp (t) = 1,

G
(2)
Lp (t) = −1,

G
(3)
Lp (t) = −G13(t) = −B(t;

4

9
),

G
(4)
Lp (t) = −G13(t)Q14(t)G(1,−2,1,−2)(t) = −B(t;

4

9
)B(t;

21

64
)B(t;

exp( 5πi4 )

16
),

G
(5)
Lp (t) = −G13(t)G14(t)G(1,−2,1,−2)(t)G15(t)G(12,−2,1,−2)(t)

= −B(t;
4

9
)B(t;

21

64
)B(t;

−15

32
)B(t;

156

625
)B(t;

−234

625
).

We obtain the following theorem.

Theorem 5.1. For every PDelta subset S, the series function

GS(t) =
+∞∑
n=0

G
(n)
S (t)tn

is a smooth real function defined on the interval (−1, 1) which is a characteristic
invariant defined for the set S.

Proof. Since |G(n)
S (t)| 5 1 for any n, we have

|GS(t)| 5
+∞∑
n=0

|t|n =
1

1− |t|
.

This means that the series GS(t) defined on (−1, 1) is uniformly convergent in the

wide sense. Using that the function G
(n)
S (t) (t ∈ (−1, 1)) is uniformly convergent in

the wide sense, we see from the Weierstrass double series theorem that the series
function GS(t) is a smooth real function defined on (−1, 1). To see that the function
GS(t) is characteristic for S, it suffices to see by induction on n = 2 that the set of
the decimal torsions τ(x) for all lattice points x ∈ S(n) except ∅, 0 is determined by
the function GS(t). According to whether 12 is in S or not, the second derivative
d2

t2 GS(0) is −2 or 2, respectively. Thus, S(2) is determined by the function GS(t).

Assume that all the lattice points of S(n−1) (n − 1 = 2) are determined by the
function GS(t). Let

Ḡ
(n)
S (t) = GS(t)−

n−1∑
i=0

G(i)S(t)ti.

The function Ḡ
(n)
S (t) has the following splitting form:

Ḡ
(n)
S (t) = G

(n)
S (t) · G̃(t) · tn,
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where
G̃(t) = 1 + G̃

(n+1)
S (t)t+ G̃

(n+2)
S (t)t2 + G̃

(n+3)
S (t)t3 + . . .

for some finite Blaschke products G̃
(n+i)
S (t) with

G
(n)
S (t) · G̃(n+i)

S (t) = G
(n+i)
S (t)

for all i (i = 1, 2, 3, . . . ). We show that the function G̃(t) has no zero’s in the interval
(−1

2 ,
1
2 ). In fact, we have

|G̃(t)| = 1−
+∞∑
i=1

|t|i = 1− 2|t|
1− |t|

> 0

for any t with |t| < 1
2 . This means that the decimal torsions τ(x) for all lattice

points x ∈ S(n) except ∅, 0 and 12 are characterized by the zero’s of the function

Ḡ
(n)
S (t) in the interval (− 1

2 ,
1
2 ) \ {0}.

It is noted that the series function GS(t) does not converge for t = ±1. This is
because

lim
n→+∞

|G(n)
S (±1) · (±1)n| = 1 ̸= 0.

The function GS(t) is called the characteristic genus function defined for the PDelta
subset S. For example, for S = {∅,0}, we have

GS(t) = 1 + t+ t2 + t3 + · · · = 1

1− t
.

For S = {∅,0, 12}, we have

GS(t) = 1 + t− (t2 + t3 + t4 + . . . ) = 1 + t− t2

1− t
.

For a finite set S with the maximal length n,

GS(t) =
n−1∑
i=0

G
(i)
S (t)ti +G

(n)
S (t)

tn

1− t
.

For the subset S = σ(Lp), we denote G
(n)
S (t) and GS(t) by G

(n)
Lp (t) and GLp(t),

respectively. The following corollary is direct from Theorem 5.1.

Corollary 5.2. The series function

GLp(t) =
+∞∑
n=0

G
(n)
Lp (t)tn

= 1 + t− t2 −B(t,
4

9
)t3 −B(t,

4

9
)B(t,

21

64
)B(t,

−15

32
)t4

−B(t,
4

9
)B(t,

21

64
)B(t,

−15

32
)B(t,

156

625
)B(t,

−234

625
)t5 + . . .
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is a smooth real function defined on the interval (−1, 1) which is a characteristic
invariant defined for the prime link set Lp.

For example, let L(2, ∗) be the set of (2, n)-torus links regarding the (2, 0)-torus
link as the empty knot ϕ. Since

σ(L(2, ∗)) = {1n|n = 0, 1, 2, 3, . . . },

where 10 = ϕ, 1 = 0 and τ(1n) = 1
n−1 − 1

nn−nn−1 for n = 3, we have:

GL(2,∗)(t) = 1 + t− t2 −
+∞∑
n=3

(
n∏

k=3

B

(
t,

1

k − 1
− 1

kk − kk−1

))
tn.

For the subset S = σα(M), we denote G
(n)
S (t) and GS(t) by G

(n)
M (t) and GM(t),

respectively. Noting that the lattice point 12 is excluded from σ(M) (by the rea-
son that the empty lattice point ∅ is introduced), we have the following corollary
obtained from Theorem 5.1.

Corollary 5.3. The series function

GM(t) =
+∞∑
n=0

G
(n)
M (t)tn

= 1 + t+ t2 +B(t;
4

9
)t3 +B(t;

4

9
)B(t;

21

64
)B(t;

−15

32
)t4

+B(t;
4

9
)B(t;

21

64
)B(t;

−15

32
)B(t;

156

625
)B(t,

−234

625
)t5 + . . . .

is a smooth real function defined on the interval (−1, 1) which is a characteristic
invariant defined for the 3-manifold set M.
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