DOI QR코드

DOI QR Code

A Reconfigurable Mixed-Model Assembly System of Cockpit Module using RFID/ZigBee Protocol

RFID/ZigBee 프로토콜을 활용한 가변구조 혼합형 모델 칵핏모듈 조립생산 시스템

  • Koo, Ja-Rok (School of Electrical Engineering, University of Ulsan)
  • 구자록 (울산대학교 전기공학부)
  • Received : 2015.09.14
  • Accepted : 2015.12.04
  • Published : 2015.12.31

Abstract

Mixed-model assembly line has been widely used in automotive assembly industry to quickly respond the diverse product demands. But, this model can lead to part confusion, which is a source for assembly errors when parts are physically interchangeable in a mixed-model assembly line. With the recent application of new technologies such as radio frequency identification (RFID) and ZigBee wireless sensor network (WSN) to the assembly process, real-time information has become available in this manufacturing systems through IT infrastructures. At first, this paper presents an RFID application for assembly processes, specifically, for a mixed-model assembly line. Thus, to ensure that parts be picked accurately, each cockpit module on the assembly line is attached with a RFID tag and the tag is scanned using a RFID reader and recognizes the vehicle, and each part of the cockpit module is attached with a barcode and the barcode is scanned by a barcode reader and each part is identified correctly for the vehicle. Second, this paper presents a ZigBee wireless sensor network (WSN) protocol-based application for a reconfigurable mixed-model assembly line of cockpit module to reduce the assembly errors and the cost of the change/reconfiguration on the assembly lines due to the various orders and new models from the motor company, avoiding the wiring efforts and inconvenience by wiring between the several RFID devices and the IT server system. Finally, we presents the operation results for several years using this RFID/ZigBee wireless sensor network (WSN) protocol-based cockpit module assembly line.

자동차 조립산업에서는 다양한 제품의 요구사항에 신속히 대응하기 위해 혼합형 모델 조립생산 방식이 널리 활용되어 왔다. 그러나 이 모델은 부품의 혼돈을 유발할 수 있는데, 혼합형 모델 조립라인에서 부품이 물리적으로 뒤바뀔 때 발생하는 조립오류의 원인이 될 수 있다. 최근 RFID와 ZigBee 무선센서네트워크와 같은 새로운 기술을 조립공정에 적용함으로써 이와 같은 생산 시스템에서 IT 인프라를 통한 실시간 정보를 활용할 수 있게 되었다. 본 논문은 혼합형 모델 조립라인에서 조립공정을 위한 RFID와 ZigBee 무선센서네트워크 활용을 제안한다. 먼저, 조립공정에서 정확한 부품을 선택하기 위해, 조립라인 상의 각 칵핏모듈에 RFID 태그를 부착하고, 이러한 태그를 RFID 리더기를 사용하여 스캔한 뒤 차량의 정보를 인식하고, 칵핏모듈의 각 부품은 바코드를 부착하여 바코드 리더기를 사용하여 스캔하여, 해당 부품이 조립될 차량의 칵핏모듈의 정확한 부품임을 확인한다. 다음으로 본 논문은 자동차 회사로부터의 다양한 주문과 신차 모델에 따른 조립라인에서의 공정의 변화와 재구성에 따라 발생하는 RFID 장치들과 IT서버 시스템 사이의 유선통신용 케이블 포설과 불편함을 제거함으로써 조립오류와 비용을 줄일 수 있는 가변구조 혼합형 모델 칵핏모듈 조립생산방식을 위해 ZigBee 무선센서네트워크 기반의 응용을 제안한다. 마지막으로 제안한 방식을 적용한 수년간의 운영 결과를 제시한다.

Keywords

References

  1. S.J. Hu, J. Ko., L. Weyand, H.A. Elmaraghy, T.K. Lien, Y. Koren, H. Bley, G. Chryssolouris, N. Nasr, M. Shpitalni, "Assembly system design and operations for product variety", CIRP Annals-Manufacturing Technology, pp.1-19, 2011.
  2. Zhixin Yang, Wei Xu, Pak-Kin Wong, Xianbo Wang, "Modeling of RFID-enabled Real-time Manufacturing Execution System in Mixed-model Assembly Lines", Mathematical Problems in Engineering, Article ID 575402, pp.1-40, 2014. DOI: http://dx.doi.org/10.1155/2014/137801
  3. Rasmus Personne, Victor Matinlassi, "Part assurance in a mixed-model assembly line", Master of Science Thesis, KTH Industrial Engineering and Management ITM, pp.1-65, 2014.
  4. Nils Boysen, Malte Fliedner, Armin Scholl, "Sequencing mixed-model assembly lines: Survey, classification and model critique", European Journal of Operational Research No.192, pp.349-373, 2009. DOI: http://dx.doi.org/10.1016/j.ejor.2007.09.013
  5. Jayashankar M. Swaminathan, Thomas R. Nitsch, "Managing Product Variety in Automobile Assembly: The Importance of the Sequencing Point", Interface vol.37, No.4, pp.324-333, July-August, 2007. DOI: http://dx.doi.org/10.1287/inte.1060.0278
  6. Gaukler, Gary M. Hausman, Warren H., "RFID in mixed-model automotive assembly operations: process and quality cost savings", IIE Transactions, Nov., 2008. DOI: http://dx.doi.org/10.1080/07408170802167654
  7. Jarok, Koo, "Error-Preventing Monitoring System using RFID in the Mixed-Model Automotive Parts Assembly Line", The Korea Academia-Industrial cooperation Society, Vol.10, No.12, pp.3863-3869, 2009. DOI: http://dx.doi.org/10.5762/KAIS.2009.10.12.3863
  8. Brent Cheldelin, Kosuke Ishii, "Mixed Model Assembly Quality: An Approach To Prevent Human Errors", Proceedings of IMECE, pp.1-12, 2004. DOI: http://dx.doi.org/10.1115/imece2004-62279
  9. V. P. Jaganathan, N. Ganesh Kumar, "Implementation of RFID Technology in Assembly Line for Part Traceability", Proceedings of the National Conference on Manufacturing Innovation Strategies & Appealing Advancements, pp.1-8, April 19, 2013.
  10. Suk-Keun Cha, Jeong-Hoon Lee, Han Gyu Kim, Joon Jae Yoo, Jung Hoon Kang, Dong Hoon Kim, Jun Yeob Song, "An Auto-Configuration of 4M Group Management Using Wireless Sensor Networks", Wireless Sensor Network, pp.402-410, 2010.
  11. Hsin-Mu Tsai, Cem Saraydar, Timothy Talty, Michael Ames, Andrew Macdonald, Ozan K. Tonguz, "ZigBee-based Intra-car Wireless Sensor Network", IEEE Xplore, July, 2007
  12. Suhas Chakravarty, Varun Jain, Nakul Midha and Prashant Bhargava, "Low-Cost Driver Assistance Using ZigBee/IEEE 802.15.4", http://www.freescale.com/beyondbits, pp.78-82.
  13. K. Pavani, M.S. Madhan Mohan, "Implementation of CAN and ZigBee networks based industrial monitoring and control applications", International Journal of Engineering Research & Technology (IJERT), pp.1-5, July, 2012
  14. Cha Jang Mok, "The Assembly Defect Preventing Monitoring System using RFID in the Cockpit Module", Master Thesis, Institute of e-Vehicle Technology, Univ. of Ulsan, 2006.
  15. IEEE Std 802.15.4-2003, Wireless Mac and Phy Specifications for LR-WANS, pp.45-48.
  16. Patent No.10-0783598, "Control device and method for Cockpit Module Production using RFID signals", 2007.
  17. Patent No.10-0846453, "Cockpit Module Production Device using RFID signals", 2007.
  18. Patent No.10-1178413, "Cockpit Module Production System and Production Methods using ZigBee Protocol", 2012.