DOI QR코드

DOI QR Code

The Effects of Information Systems Quality on the Performance of Emotional Labors : Focused on the Airline Call Centers

정보시스템 품질이 감정노동 성과에 미치는 영향: 항공사 콜센터를 중심으로

  • Park, Wonhee (Department of Internet Information, Osan University) ;
  • Kim, Shinkon (Department of Management, Kwnagwoon University) ;
  • Kim, Changkyu (School of Industrial Management, Korea University of Technology and Education)
  • 박원희 (오산대학교 인터넷정보처리과) ;
  • 김신곤 (광운대학교 경영학부) ;
  • 김창규 (한국기술대학교 산업경영학부)
  • Received : 2015.10.30
  • Accepted : 2015.12.04
  • Published : 2015.12.31

Abstract

When the crucial role of the agent in communicating with the customer is acknowledged well enough to relieve the agent's stress, it will lead to the decrease of the agent's emotional labor and the improvement of the business organization's performance simultaneously. However, the research on the relationship between information system and the emotional labor has been scarcely conducted even though the importance of the emotional labor is actively researched and discussed these days. Therefore, much effort has been put in this study to fine out how the quality of airline call center information system affects expectations-conformation and how expectations-conformation and self-efficacy affect performance of Emotional Labors. Analysis of the results to target a call center agent 436 people, When you provide them with quality information systems, it increased satisfaction and pride in their job. This mechanisms subsequently reduces the strength of the emotion labor, which ultimately improves the service performance. The implications of this study can be summarized as following: First, this research presented practical guidelines to the organization's decision-makers related to the airline call center operations in order to introduce and expand successful call center information system. Second, this research suggested the possible method to inspect and diagnose the system by way of applying the measurement model mentioned in this research into the airline information system and analyzing it. Third, the performance-measuring model developed in order to measure the performance of the airline call center information system can also be used when we carry out the performance-measuring task in the similar information system as the basis of diagnosing the situation and presenting the driving directions.

콜센터 정보시스템에서 상담원은 고객과의 상호작용에서 매우 중요한 역할을 담당한다. 이러한 정보시스템을 효과적으로 유용하게 사용할 때 상담원의 업무 스트레스가 줄고, 이는 상담원의 감정노동을 감소시켜 개인과 조직의 성과를 향상시키는 결과로 이어진다. 최근 감정노동에 대한 논의가 활발하지만, 대표적인 감정노동 직군인 콜센터 상담원을 대상으로 한 상담원과 고객응대에 필수적인 정보시스템 간의 상호작용 효과에 대한 연구가 부족한 실정이다. 따라서 본 연구에서는 항공사 콜센터 정보시스템품질이 기대일치에 어떤 영향을 미치는지, 그리고 기대일치와 자기효능감이 감정노동성과에 어떠한 영향을 끼치는지 규명하고자 하였다. 콜센터 상담원 436명을 대상으로 분석한 결과, 이들에게 양질의 정보시스템을 제공할 때 직무에 대한 만족도와 자부심이 높아지고, 이는 감정노동의 강도를 낮추어 궁극적으로 서비스성과를 향상하는 것으로 나타났다. 본 연구의 시사점은 다음과 같다. 첫째, 항공사 콜센터 정보시스템 운영과 관련한 조직의 의사결정자에게 성공적인 콜센터 정보시스템 도입 및 확장을 위한 실무지침을 제공했다. 둘째, 본 연구에서 제안한 측정모형을 항공사 정보시스템에 적용 및 분석해 봄으로써 시스템 사용에 대한 점검 및 진단을 수행 할 수 있는 방안을 제시하였다. 마지막으로 이론적으로 구축된 항공사 콜센터 정보시스템과 측정모형에 대하여 측정항목 간 인과관계를 실증적으로 분석함으로써 콜센터 정보시스템의 성과측정을 위한 확고한 전략적 안목을 제시하였다.

Keywords

References

  1. Delone, William H., and Ephraim R. McLean. "The DeLone and McLean model of information systems success: a ten-year update." Journal of management information systems 19.4 (2003): 9-30. https://doi.org/10.1080/07421222.2003.11045748
  2. Oliver, R. L. , A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions, Journal of Marketing Research, 17(4), 460-469. (1980) DOI: http://dx.doi.org/10.2307/3150499
  3. LaRocco, J. M., House, J. S., & French Jr, J. R. . Social support, occupational stress, and health. Journal of health and Social Behavior, 21, 202-218. (1980) DOI: http://dx.doi.org/10.2307/2136616
  4. Wilcox, R. R. A review of the beta-binomial model and its extensions. Journal of Educational and Behavioral Statistics, 6(1), 3-32. (1981) DOI: http://dx.doi.org/10.2307/1165046
  5. Dean, A., Kolody, B. & Wood, P. Effect of social support from various sources on depression in elderly persons. Journal of Health and Social Behavior, 31(2), 148-161. (1990) DOI: http://dx.doi.org/10.2307/2137169
  6. Goodhue, D. L. Understanding user evaluations of information systems. Management Science, 41(12), 1827-1844. (1995) DOI: http://dx.doi.org/10.1287/mnsc.41.12.1827
  7. Szajna, Bernadette, and Richard W. Scamell. "The effects of information system user expectations on their performance and perceptions." Mis Quarterly (1993): 493-516. DOI: http://dx.doi.org/10.2307/249589
  8. Hsu, Meng-Hsiang, and Chao-Min Chiu. "Internet self-efficacy and electronic service acceptance." Decision support systems 38.3 (2004): 369-381. DOI: http://dx.doi.org/10.1016/j.dss.2003.08.001
  9. Bandura, Albert. "Self-efficacy: toward a unifying theory of behavioral change." Psychological review 84.2 (1977): 191-215. DOI: http://dx.doi.org/10.1037/0033-295X.84.2.191
  10. Benbow, C. P. Sex-related differences in precocious mathematical reasoning ability: Not illusory, not easily explained. Behavioral and Brain Sciences, 11(2), 217-232. (1988) DOI: http://dx.doi.org/10.1017/S0140525X00049670
  11. Greenglass, E. R., & Burke, R. J. Work and family precursors of burnout in teachers: Sex differences. Sex Roles, 18(3-4), 215-229. (1988) DOI: http://dx.doi.org/10.1007/BF00287791
  12. Friedman, I. A. Burnout in teachers: Shattered dreams of impeccable professional performance. Journal of Clinical Psychology, 56(5), 595-606. (2000) DOI: http://dx.doi.org/10.1002/(SICI)1097-4679(200005) 56:5%3C595::AID-JCLP2%3E3.0.CO;2-Q
  13. Suh, K., Kim, S., & Lee, J. End-user's disconfirmed expectations and the success of information systems. Information Resources Management Journal (IRMJ), 7(4), 30-39. (1994) DOI: http://dx.doi.org/10.4018/irmj.1994100103
  14. Thong, J. Y., Hong, S. J., & Tam, K. Y. The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810. (2006) DOI: http://dx.doi.org/10.1016/j.ijhcs.2006.05.001
  15. Roca, J. C., Chiu, C. M., & Martinez, F. J. Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683-696. (2006). DOI: http://dx.doi.org/10.1016/j.ijhcs.2006.01.003
  16. Johnson, R. D., & Marakas, G. M. (2000). Research report: the role of behavioral modeling in computer skills acquisition: toward refinement of the model. Information Systems Research, 11(4), 402-417. DOI: http://dx.doi.org/10.1287/isre.11.4.402.11869
  17. Straker-Banks, A. The relationship among teachers who field dependent of field independent in an online on their perceptions of computer self-efficacy, computer anxiety, and computer usefulness. New York University. (2002)
  18. Nelson, R. R., Todd, P. A., & Wixom, B. H. Antecedents of information and system quality: an empirical examination within the context of data warehousing. Journal of Management Information Systems, 21(4), 199-235. (2005) https://doi.org/10.1080/07421222.2005.11045823
  19. DeLone, W. H., & McLean, E. R. Information systems success: the quest for the dependent variable. Information Systems Research, 3(1), 60-95. (1992) DOI: http://dx.doi.org/10.1287/isre.3.1.60
  20. Seddon, P. B. and Kiew, M.Y. "A Partial Test and Development of the DeLone and McLean Model of IS Success," Proceedings of the 15th International Conference on Information Systems, J.I. DeGross, S.L. Huff, and M.C. Munroe, Vancouver, Canada, 1994, pp.99-110
  21. Pitt, L. F., Watson, R. T., & Kavan, C. B. Service quality: a measure of information systems effectiveness. MIS quarterly, 19(2), 173-187. (1995) DOI: http://dx.doi.org/10.2307/249687
  22. Kettinger, W.J., and Lee, C.C. "Perceived Service Quality and User Satisfaction with the Information Services Function," Decision Sciences. vol. 25, no. 6: pp. 737-766. (1994) DOI: http://dx.doi.org/10.1111/j.1540-5915.1994.tb01868.x
  23. Kettinger, W. J., & Lee, C. C. Pragmatic perspectives on the measurement of information systems service quality. MIS quarterly, 21(2), 223-240. (1997). DOI: http://dx.doi.org/10.2307/249421
  24. Goodhue, D. L., & Thompson, R. L. Task-technology fit and individual performance. MIS quarterly, 19(2), 213-236. (1995) DOI: http://dx.doi.org/10.2307/249689
  25. Dishaw, M. T & Strong, D. M. Extending the technology acceptance model with task-technology fit constructs, Information and Management. 36(1), 9-21. (1999) DOI: http://dx.doi.org/10.1016/S0378-7206(98)00101-3
  26. Bhattacherjee, A. Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 25(3), 351-370. (2001) DOI: http://dx.doi.org/10.2307/3250921
  27. Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. Deep blue retrievals of Asian aerosol properties during ACE-Asia. Geoscience and Remote Sensing, IEEE Transactions on, 44(11), 3180-3195. (2006) DOI: http://dx.doi.org/10.1109/TGRS.2006.879540
  28. Spreitzer, G. M. Psychological empowerment in the workplace: Dimensions, measurement, and validation. Academy of management Journal, 38(5), 1442-1465. (1995) DOI: http://dx.doi.org/10.2307/256865
  29. Deng, X., Doll, W., & Truong, D. Computer self-efficacy in an ongoing use context. Behaviour & Information Technology, 23(6), 395-412. (2004). DOI: http://dx.doi.org/10.1080/01449290410001723454
  30. Kruml, S. M., & Geddes, D. Exploring the Dimensions of Emotional Labor The Heart of Hochschild's Work. Management communication quarterly, 14(1), 8-49. (2000) DOI: http://dx.doi.org/10.1177/0893318900141002
  31. Werts, C. E., Linn, R. L., & Joreskog, K. G. Intraclass reliability estimates: testing structural assumptions. Educational and Psychological measurement, 34(1), 25-33. (1974) DOI: http://dx.doi.org/10.1177/001316447403400104
  32. Srite, M., & Karahanna, E. The role of espoused national cultural values in technology acceptance. MIS quarterly, 30(3), 679-704. (2006) https://doi.org/10.2307/25148745
  33. Barclay, Donald, Christopher Higgins, and Ronald Thompson "The partial least squares (PLS) approach to causal modeling: personal computer adoption and use as an illustration." Technology studies 2.2 : 285-309. (1995)
  34. Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational statistics & data analysis, 48(1), 159-205. DOI: http://dx.doi.org/10.1016/j.csda.2004.03.005
  35. Falk, R. F., & Miller, N. B. A primer for soft modeling. University of Akron Press. (1992)
  36. Cohen J., Statistical Power Analysis for the Behavioral Sciences, 2nd (ed.) Hillsdale, New Jersey: Erlbaum, 1988.
  37. Patnayakuni, R., Rai, A., & Seth, N. Relational antecedents of information flow integration for supply chain coordination. Journal of Management Information Systems, 23(1), 13-49. (2006) DOI: http://dx.doi.org/10.2753/MIS0742-1222230101
  38. Rai, A., R. Patnayakuni, N. Patnayakuni. Firm performance impacts of digitally enabled supply chain integration capabilities. MIS Quart. 30(2) 225-246. (2006) https://doi.org/10.2307/25148729
  39. DeLone, W.H., and McLean, E.R. "Information Systems Success Revisited," in: Proceedings of the 35th Hawaii International Conference on System Sciences (HICSS 02). Big Island, Hawaii: pp. 238-249. (2002) DOI: http://dx.doi.org/10.1109/HICSS.2002.994345
  40. Seddon, P. B. A respecification and extension of the DeLone and McLean model of IS success. Information systems research, 8(3), 240-253. (1997) DOI: http://dx.doi.org/10.1287/isre.8.3.240