Abstract
In this paper, we propose new search algorithms using SVD(Singular Value Decomposition) for fast search of Raman spectrum. In the proposed algorithms, small number of the eigen vectors obtained by SVD are chosen in accordance with their respective significance to achieve computation reduction. By introducing pilot test, we exclude large number of data from search and then, we apply partial distance search(PDS) for further computation reduction. We prepared 14,032 kinds of chemical Raman spectrum as the library for comparisons. Experiments were carried out with 7 methods, that is Full Search, PDS, 1DMPS modified MPS for applying to 1-dimensional space data with PDS(1DMPS+PDS), 1DMPS with PDS by using descending sorted variance of data(1DMPS Sort with Variance+PDS), 250-dimensional components of the SVD with PDS(250SVD+PDS) and proposed algorithms, PSP and PSSP. For exact comparison of computations, we compared the number of multiplications and additions required for each method. According to the experiments, PSSP algorithm shows 64.8% computation reduction when compared with 250SVD+PDS while PSP shows 157% computation reduction.
본 논문에서는 라만 스펙트럼의 고속 탐색을 위해 특이값 분해(SVD, Singular Value Decomposition)를 이용한 새로운 탐색 알고리즘들을 제안한다. 제안 알고리즘에서는 SVD를 통해 얻은 특이벡터를 중요도에 따라 선별하여 실험에 사용함으로써 계산량 단축을 도모한다. 파일럿 테스트(Pilot test)를 수행하여 일부 데이터들을 미리 탐색 대상에서 제외시키고 부분탐색법(PDS, Partial Distance Search)을 적용하여 탐색을 수행함으로써 큰 폭으로 계산량을 감소시킨다. 실험에 사용한 데이터베이스는 총 14,032종의 화학 물질 라만 스펙트럼으로 구성하였으며, 기존의 탐색 방법인 전체탐색법(Full Search), PDS와 평균피라미드탐색법(MPS, Mean Pyramid Search)를 1차원공간상의 신호에 적용하기 적절하게 변형한 1DMPS에 PDS를 적용한 실험(1DMPS+PDS), 데이터의 분산을 내림차순 정렬하여 !DMPS와 PDS를 적용한 실험(1DMPS Sort with Variance+PDS), 데이터의 250차원 성분만 SVD 변환하여 PDS를 적용한 실험(250SVD+PDS), 그리고 제안 알고리즘 PSP(Partial SVD with PDS)와 PSSP(Partial SVD with Sorted Pilot test)을 적용한 실험을 비교 분석하였다. 각 알고리즘의 성능은 곱셈 및 덧셈의 연산량 비교를 통해 이루어졌는데, 실험 결과에 따르면 250SVD+PDS에 비해 제안알고리즘 PSP는 15.7%, PSSP에서는 64.8%의 계산량 감소를 확인하였다.