Abstract
The purpose of this paper is to propose a method for recommendation and personalization of important news articles based on evaluating news value. Evaluation of news is the approach by which editors select news articles for cover-story in traditional offline news papers area. For this, my study proposes a suite of methods to select and personalize a set of news based on evaluating news articles, not just on the personal preference for them. The aforementioned the value of news articles including social impact, novelty, relevance to each audience, and human interest, all of which have been factorized in many previous studies, is a main concept for a procedural and structural application methodology deduced in this study. After a comparative case study with other online news services, it was shown that my research provides more effective way to select important news articles in terms of user satisfaction than others.
본 논문의 연구 목표는 뉴스 가치 평가에 근거한 중요 뉴스 자동 추천 및 개인화 방안을 제시하는 데에 있다. 뉴스 가치 평가는 전통적인 오프라인 신문에서 편집장들이 1면 뉴스를 선정할 때 사용하는 접근법으로 본 논문에서는 이를 시스템적으로 구현하는 방안을 제시한다. 이렇게 함으로써 콘텐츠 주제에 대한 전통적인 개인 선호 성향과는 다르게 뉴스의 사회적 가치에 대한 관심 성향을 기준으로 중요 뉴스를 선별할 수가 있다. 뉴스의 사회적 가치는 지면 신문의 기존 연구에서 제시한 사회적 중요도, 새로운 볼거리, 수용자 관련성, 인간적 흥미 4가지 기준을 준용하였고, 본 연구에서는 이를 시스템적으로 적용하기 위한 절차적, 구조적 방안을 도출하였다. 중요 뉴스의 선별 과정은 뉴스의 가치 평가를 위한 과정과 평가된 결과를 개인화하는 과정으로 구성된다. 실험을 통해 특정 시점에서의 각 온라인 뉴스 서비스들의 중요 뉴스들과 본 논문에서 제시한 기법을 통해 선별된 중요 뉴스들에 대한 사용자 만족도를 비교 평가하여 본 연구에서 제안하는 방법이 더 효과적임을 확인하였다.