DOI QR코드

DOI QR Code

WAVE Packet Transmission Method for Railroad WAVE Communication

철도 WAVE 통신을 위한 WAVE 패킷 전송방법

  • Received : 2015.06.29
  • Accepted : 2015.10.08
  • Published : 2015.10.31

Abstract

In this paper, an efficient Wireless Access in Vehicular Environment (WAVE) packet transmission scheme for railroad communication is proposed. WAVE communication is a wireless local area network (WLAN) based communication and it is developed to be suitable for vehicular communication. There has been a lot of study on WAVE's applicability to Intelligent Transport System (ITS). As one of main transportation methods, by using WAVE, quality of railroad communication including WLAN based Communication Based Train Control (CBTC) can be enhanced and variety of railroad communication systems can be integrated into WAVE. However, there are technical challenges to adopt WAVE in railroad communications. For the simplest single-PHY WAVE, time division alternation of 50ms between Control Channel (CCH) and Service Channel (SCH) is required. Since there are delay sensitive railroad traffic types, alternation operation of CCH and SCH may cause performance degradation. In this paper, after identifying a couple of problems based on detailed analysis, a novel packet transmission scheme under railroad environment is proposed. In order to verify if the proposed scheme meets the requirement of railroad communication, WAVE transmission is mathematically modeled.

본 논문에서는 Wireless Access in Vehicular Environments (WAVE)통신을 철도통신에 적용하였을 때 사용할 수 있는 효과적인 패킷 전송 방법을 제안하였다. WAVE통신은 무선랜에 기초한 통신으로 이동체 통신에 적합하도록 개발된 통신방법으로 Intelligent Transport System (ITS)에 응용하도록 많은 연구가 이루어져 왔다. 철도도 주요 교통수단의 하나로 WAVE를 이용하면 현재 무선랜 시스템을 이용한 Communication Based Train Control (CBTC)를 포함한 많은 서비스들의 성능을 개선하고 여러 시스템으로 분산되어 있는 서비스들을 WAVE로 통합할 수 있다. 하지만, WAVE를 철도에 사용하기 위해서는 해결되어야 하는 문제점이 존재한다. 가장 단순한 구조인 Single-PHY WAVE는 제어채널(Control Channel, CCH)와 서비스 채널(Service Channel, SCH)을 50ms씩 번갈아가며 통신을 수행한다. 철도 통신은 주로 지연에 민감한 패킷들이 많이 존재하는데 이러한 동작에서는 성능 열화가 발생할 수 있다. 본 논문에서는 현재 WAVE통신 방법을 상세히 분석한 후 문제점을 도출하고 이러한 문제점을 철도 WAVE 환경에서 해결할 수 있는 새로운 패킷 전송 방법을 제안한다. WAVE 전송 성능을 수학적 모델링을 하여 철도 통신의 요구사항을 만족하는지 여부를 확인하였다.

Keywords

References

  1. IEEE Std 1609.1-2006-IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)-Resource Manager, 13 Oct 2006. DOI: http://dx.doi.org/10.1109/IEEESTD.2006.246485
  2. IEEE Std 1609.2-2013-IEEE Standard for Wireless Access in Vehicular Environments-Security Services for Applications and Management Messages, 26 Apr 2013.
  3. IEEE Std 1609.3-2010-IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Networking Services, 30 Dec 2010
  4. IEEE Std 1609.4-2010-IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Multi-channel Operation, 7 Feb 2011.
  5. IEEE 802.11p-2010-Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments, IEEE Standards Association, 2010. DOI: http://dx.doi.org/10.1109/IEEESTD.2010.5514475
  6. http://standards.ieee.org/develop/wg/1609_WG.htm
  7. DSRC Implementation Guide-A guide to users of SAE J2735 message sets over DSRC. SAE International, 2010
  8. IEEE Std 1609.11-2010-IEEE Standard for Wireless Access in Vehicular Environments-Over-the-Air Electronic Payment Data Exchange Protocol for Intelligent Transportation Systems (ITS), 9 Jan 2011.
  9. http://www.its.dot.gov/
  10. W. Fehr, "IntelliDriveSM Program Overview", Transpo 2010, 13 Dec. 2010.
  11. http://www.makewave.com/site.en/showroom/gst.shtml
  12. Bianchi, G., Performance analysis of the IEEE 802.11 distributed coordination function, IEEE J. Sel. Areas Commun., 18, 535-547, 2000 DOI: http://dx.doi.org/10.1109/49.840210
  13. Wu, H., Peng, Y., Long, K., Cheng, S., and Ma, J., Performance of reliable transport protocol over IEEE 802.11 wireless LAN: analysis and enhancement, in Proc. IEEE INFOCOM 2002., 599-607. 2002
  14. Kwak, B.-J., Song, N.-O., and Miller, L. E., Performance analysis of exponential backoff, IEEE/ACM Trans. Networking. 13, 343-355, 2005. DOI: http://dx.doi.org/10.1109/TNET.2005.845533
  15. Kumar, A., Altman, E., Miorandi, D., and Goyal, M., New insights from a fixed point analysis of single cell IEEE 802.11 WLANs, in Proc. IEEE INFOCOM 2005. 1550-1561. 2005 DOI: http://dx.doi.org/10.1109/infcom.2005.1498438
  16. Sakurai, T., and Vu, H. L., MAC Access Delay of IEEE 802.11 DCF. Wireless Communication, 6, 1702-1710. 2007. DOI: http://dx.doi.org/10.1109/TWC.2007.360372

Cited by

  1. Performance Verification of WAVE Communication Technology for Railway Application vol.19, pp.4, 2016, https://doi.org/10.7782/JKSR.2016.19.4.456