DOI QR코드

DOI QR Code

Thermal Design of a Cooling Coil for Building Air Conditioning

건물 공조용 냉수 코일의 열 설계

  • Kim, Nae-Hyun (Department of Mechanical System Engineering, University of Incheon) ;
  • Byun, Ho-Won (Department of Mechanical System Engineering, University of Incheon)
  • 김내현 (인천대학교 기계시스템공학과) ;
  • 변호원 (인천대학교 기계시스템공학과)
  • Received : 2015.06.10
  • Accepted : 2015.10.08
  • Published : 2015.10.31

Abstract

The surface of the cooling coil becomes dry, wet or partially wet depending on the operating condition. Thus, a proper design of the cooling coil should include a heat transfer analysis on dry, wet or partially wet surfaces. In this study, an elementary model, which analyzes the cooling on an elementaty basis, is proposed. Comparison of the predictions of the model with experimental data of the cooling coil revealed that heat transfer rates were predicted within 10.1%, airside pressure drop within 11.1% and sensible heat ratio within 5.7%. The model was used to investigate the effect of water circuitory on cooling coil performance.

건물용 공기조화기의 냉수 코일은 작동조건에 따라 건표면, 습표면 또는 부분적인 습표면이 형성된다. 따라서 냉수코일을 적절히 설계하기 위해서는 건표면과 습표면, 그리고 부분적 습표면에 대한 열전달 해석이 필요하다. 본 연구에서는 미소체적에 대한 해석을 통하여 냉수코일의 성능을 계산하는 미소체적 모델을 제시하였다. 해석 모델의 예측치를 냉수코일 실험결과와 비교한 결과 미소 체적 모델은 공기측 전열량을 10.1% 이내에서 예측하고 공기측 압력손실을 11.1%, 현열비도 5.7%내로 예측하였다. 해석 모델을 활용하여 물측 회로의 변화가 냉수코일의 성능에 미치는 영향을 검토하였다.

Keywords

References

  1. AHRI Standard 410, "Forced circulation air cooling and air heating coils", Air-Conditioning and Refrigeration Institute, 1981.
  2. D. R. Mirth and S. Ramadhyani, "Prediction of cooling coil performance under condensing conditions", Int. J. Heat Fluid Flow, Vol. 14, pp. 391-400, 1993. DOI: http://dx.doi.org/10.1016/0142-727X(93)90013-D
  3. R. L. Webb and N. H. Kim, Principles of Enhanced Heat Transfer, 2nd Edition, Taylor and Francis Pub, 2005.
  4. C. C. Wang, "Recent advances in fin-and-tube heat exchangers", Int. J. Air-Cond. Refrig, Vol. 19, pp. 291-301, 2011. DOI: http://dx.doi.org/10.1142/S2010132511000624
  5. W. Pirompugd, C. C. Wang and S. Wongwises, "A review on reduction method for heat and mass transfer characteristics of fin-and-tube heat exchangers under dehumidifying conditions", Int. J. Heat Mass Trans, Vol. 52, pp. 2370-2378, 2009. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.10.019
  6. C. C. Wang, and C. T. Chang, "Heat and mass transfer for plate fin-and-tube heat exchangers, with and without hydrophilic coating", Int. J. Heat Mass Trans, Vol. 41, pp. 3109-3120, 1998. DOI: http://dx.doi.org/10.1016/S0017-9310(98)00060-X
  7. C. C. Wang, W. S. Lee, W. T. Sheu and Y. T. Chang, "A comparison of the airside performance of fin-and-tube heat exchangers in wet conditions; with and without hydrophilic coating", Applied Thermal Eng, Vol. 22, pp. 267-278, 2002. DOI: http://dx.doi.org/10.1016/S1359-4311(01)00090-4
  8. J. Min, X. Wu, L. Shen and F. Gao, "Hydrophilic treatment and performance evaluation of copper finned tube evaporator", Applied Thermal Eng, Vol. 31, pp. 2936-2942, 2011. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2011.05.024
  9. C. C. Wang, J. S. Liaw and B. C. Yang, "Airside performance of herringbone wavy fin-and-tube heat exchangers-Data with larger diameter tube", Int. J. Heat Mass Trans, Vol. 54, pp. 1024-1029, 2011. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.11.038
  10. Y. C. Liu, S. Wongwises, W. J. Chang and C. C. Wang, "Air-side performance of fin-and-tube heat exchangers in dehumidifying conditions-Data with larger diameter", Int. J. Heat Mass Trans, Vol. 53, pp. 1603-1608, 2010. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.12.015
  11. N.-H. Kim, K.-J. Lee, J.-C. Han and B.-N. Choi, "Thermal performance of sine wave fin-and-oval tube heat exchangers", Int. J. Air-Cond. Refrig., Vol. 21, No. 1, 1350008, 2013. DOI: http://dx.doi.org/10.1142/S2010132513500089
  12. N.-H. Kim, K.-J. Lee and Y.-B. Jeong, "Airside performance of oval tube heat exchangers having sine wave fins under wet condition, Applied. Therm. Eng., Vol. 66, pp. 580-589, 2014. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2014.02.042
  13. A. Bejan and A. D. Kraus, Heat Transfer Handbook, John Wiley and Sons, Inc., 2003.
  14. T. E. Schmidt, "Heat transfer calculations for extended surfaces," J. of ASRE, Refrigeration Engineering, Vol. 4, pp. 351-357, 1949.
  15. V. Gnielinski, "New equations for heat and mass transfer in turbulent pipe flows", Int. Chem. Eng, Vol. 16, pp.359-368, 1976.
  16. B. S. Petukhov, "Heat transfer and friction in turbulent pipe flow with variable physical properties", Advances in Heat Transfer, Eds. T. F. Irvine and J, P, Hartnett, Vol. 6, Academic Press, 1970. DOI: http://dx.doi.org/10.1016/s0065-2717(08)70153-9
  17. T. H. Kuehn, J. W. Ramsey and J. L. Threlkeld, Thermal Environmental Engineering, Prentice Hall Pub., 1998.