DOI QR코드

DOI QR Code

Analytical Study on Characteristics of von Mises Yield Criterion under Plane Strain Condition

평면변형률상태에서의 von Mises 항복기준의 특성에 관한 이론적 연구

  • Lee, Seung-Hyun (Division of Architecture, Architectural Engineering and Civil Engineering, Sunmoon University) ;
  • Kim, Byoung-Il (Department of Civil and Environmental Engineering, Myongji University)
  • 이승현 (선문대학교 건축사회환경학부) ;
  • 김병일 (명지대학교 토목환경공학과)
  • Received : 2015.08.03
  • Accepted : 2015.09.11
  • Published : 2015.09.30

Abstract

In order to investigate characteristics of the von Mises yield criterion under 2 dimensional stress condition, two cases of plane strain were studied. One of which was for zero elastic strain and the other was for zero plastic strain increment. Yield functions for the plane strain condition for zero elastic strain and for the plane stress condition were represented as ellipse and the two yield functions were compared by ratios of major axis, minor axis and eccentricity and it was seen that the ratio of minor axis was the same between the two cases and the ratios of major axis and eccentricity were functions of Poisson's ratio. Region of elastic behavior obtained from considering plane strain condition of zero elastic strain increases as the Poisson's ratio increases. Yield function for plane strain obtained from considering zero plastic increment and associate flow rule was displayed as straight line and the region of elastic behavior was greater than that for the case of plane stress.

2차원 응력조건에 대한 von Mises 항복기준의 특징을 살펴보기 위해 탄성변형률이 0이 되는 평면변형률 조건과 소성변형률증분이 0이 되는 평면변형률 조건을 고려해 보았다. 탄성변형률이 0인 평면변형률조건을 통해 얻은 항복함수와 평면응력조건에서의 항복함수는 기하학적으로 타원을 나타내는데 두 경우에 대한 기하하적 비교를 타원의 장, 단축의 길이비와 이심률의 비로 나타낼 때 단축비는 같았으나 장축비 및 이심률의 비는 포아송비의 함수로 표현되었다. 탄성변형률이 0인 평면변형률조건을 통해 얻은 von Mises 항복기준에 대하여 탄성거동을 보이는 영역은 포아송비가 커짐에 따라 넓어짐을 알 수 있었다. 소성변형률증분이 0인 평면변형률조건을 통해 관련유동법칙을 써서 항복함수를 구하였는데 기하하적으로 볼 때 평면응력조건에서의 항복함수가 타원임과는 달리 직선을 나타내었으며 평면응력조건일 때보다 탄성거동영역이 컸다.

Keywords

References

  1. T. L. Anderson, Fracture Mechanics - Fundamentals and Applications, Third Edition, CRC Press, Boca Raton, FL, 2006.
  2. A. C. Ugural and S. K. Fenster, Advanced strength and applied elasticity, Elsevier Science Publishing Co., Inc., pp.52-57, 1987.
  3. C. S. Desai and H. J. Siriwardane, Constitutive laws for engineering materials, Prentice-Hall, Inc., pp.36-38, 1984.
  4. R. von Mises, Mechanik der festen Korper im plastisch deformablen Zustand. Gottin. Nachr. Math. Phys., vol. 1, pp.582-592, 1913.
  5. J. Lubliner, Plasticity Theory, Courier Dover Publications, 2008.