DOI QR코드

DOI QR Code

카파자승해석법을 이용한 광시스템의 에러 확률에 관한 연구

A study on the error probability of optical system using kappa square analysis method

  • 하은실 (남서울대학교 정보통신학과)
  • Ha, Eun-Sil (Dept. of Information-Communication Engineering, NamSeoul University)
  • 투고 : 2015.08.21
  • 심사 : 2015.09.11
  • 발행 : 2015.09.30

초록

광시스템상에는 외부로부터의 잡음과 시스템 자체의 잡음이 항상 존재하는데, 이러한 잡음은 광시스템의 성능을 저하시키는 요인으로 작용하게 되어 결국에는 시스템의 에러확율을 변화시키게 된다. 이에 본 논문에서는 광시스템의 특성변수인 m 값을 도입하여 다양한 m값의 변화에 따라 광시스템의 에러확률을 ${\kappa}$-자승법을 이용하여 계산하였다. 계산 결과 m값에 따라 광시스템의 에러확률이 변화함을 확인하였고, 광시스템의 표준에럭확률인 $10^{-9}$을 유지하는 경우 m값을 400정도로 유지하면 됨을 확인하였다. 이는 m값이 큰 경우는 광시스템이 저출력임을 의미하므로 보다 작은 출력의 광원을 사용해도 광시스템의 에러확율을 유지하는데 문제가 없음을 알 수 있었다. 이는 일반적인 경우 저출력의 광원을 사용하는 경우 광시스템의 수신단에서 신호를 증폭하는 전치증폭기를 사용하지 않아도 됨을 의미하므로 보다 효율적이며 저렴하게 광시스템을 구현할 수 있음을 의미한다.

On the optical system and the system itself of the noise of the noise from the outside always present. This noise is to function as reducing performance of the optical system. Therefore, the probability of error, thereby changing the system. In this paper, the error probability of the optical system due to changes in various values by introducing the characteristic variable the value of the optical system was calculated using the ${\kappa}$-square method. Was confirmed also in accordance with the calculation result is an error probability of the optical system changes, it was confirmed that when the value of the holding case for holding the standard about 400 Lux on the probability of the optical system. This case was found to be an optical system using a light source with a low output, so that means the smaller output is no problem to maintain the error probability value of the optical system is large. This means that more effective and less expensive to implement because it means that the optical system does not require the use of pre-amplifier for amplifying the signal at the receiving end of an optical system using a light source with a low output when the normal case.

키워드

참고문헌

  1. T. Li and M.C. Teich, "Photon point process for travelling-wave laser amplifiers," J. Quantum Elect., vol. 29, no. 9, pp. 2568-2578, 1993. DOI: http://dx.doi.org/10.1109/3.247716
  2. L. Nguyen, J. F. Young and B. Aazhang, "Photoelectric current distribution and bit error rate in optical communication systems using a superfluorescent fiber source," J. Lightwave Technology, vol.14, no. 6, pp. 1455-1466, 1996. DOI: http://dx.doi.org/10.1109/50.511675
  3. B. E. Saleh and M.C. Teich, Fundamentals of Photonics. John Wiley & Sons, Inc., New York, 1991. DOI: http://dx.doi.org/10.1002/0471213748
  4. J. A. Arnaud, "Enhancement of optical receiver sensitivities by amplification of the carrier,' IEEE j. Quantum Electronics, vol. 4, no. 11, pp. 893-895, 1968. DOI: http://dx.doi.org/10.1109/JQE.1968.1074977
  5. D. Marcuse, "Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers," J.Lightwave Technology, vol. 8, no. 12, pp. 1816-1823, 1990. DOI: http://dx.doi.org/10.1109/50.62876
  6. H. A. Haus and J. A. Mullen, "Quantum noise in linear amplifiers," Physical Review, vol. 128, no. 5, pp. 2407-2412, 1962. DOI: http://dx.doi.org/10.1103/PhysRev.128.2407
  7. D. Marcuse, "Calculation of bit-error probability for a lightwave system with optical amplifiers and post-detection Gaussian noise," J. Lightwave Technology, vol. 9, no. 4, pp. 505-513, 1991. DOI: http://dx.doi.org/10.1109/50.76665
  8. T. Li and M. C. Teich, "Bit-error rate for a lightwave communication system incorporating an erbium-doped fibre amplifier," Electronics Letters, vol. 27, no. 7, pp. 598-600, 1991. DOI: http://dx.doi.org/10.1049/el:19910377
  9. W. B. Davenport, Jr. and W. L. Root, An Introduction to the Theory of Random Signals and Noise. McGraw Hill, 1958.
  10. G. J. Pendock and D. D. Sampson, "Transmission performance of high bit-rate spectrumsliced WDM systems," J. Lightwave Technology, vol. 14, no. 10, pp. 2141-2148, 1996. DOI: http://dx.doi.org/10.1109/50.541201
  11. N. S. Bergano, "Wavelength-division-multiplexing in long-haul transmission systems," J. Lightwave Technology, vol. 14, no. 6, pp. 1299-1308, 1996. DOI: http://dx.doi.org/10.1109/50.511662
  12. Vivek Arya and I. Jacobs, "Capacity and power budget of spectrally-sliced WDM networks," in Optical Fiber Communications Conference (OFC), OSA Technical Digest Series, 1997.
  13. Vivek Arya and I. Jacobs, "Application of optical preamplification to optimize the receiver sensitivity of spectrum-sliced WDM systems," IEEE/LEOS Annual Meeting 1996. paper WEE2, Boston, MA, November 18-21, 1996. DOI: http://dx.doi.org/10.1109/LEOS.1996.571647
  14. Vivek Arya and I. Jacobs, "Optical preamplifier receiver for spectrum-sliced WDM," Journal of Lightwave Technology, vol. 15, no. 4, pp. 576-583, 1997. DOI: http://dx.doi.org/10.1109/50.566678
  15. I. Jacobs, "Optimum integration time for the incoherent detection of noise-like communication signals," Spring U.R.S.I. Meeting, Apr. 30, 1962.