DOI QR코드

DOI QR Code

Design of a Monolithic Photoelectrochemical Tandem Cell for Solar Water Splitting with a Dye-sensitized Solar Cell and WO3/BiVO4 Photoanode

  • Chae, Sang Youn (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Jung, Hejin (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Joo, Oh-Shim (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Hwang, Yun Jeong (Clean Energy Research Center, Korea Institute of Science and Technology)
  • Received : 2015.11.24
  • Accepted : 2015.12.24
  • Published : 2015.12.31

Abstract

Photoelectrochemical cell (PEC) is one of the attractive ways to produce clean and renewable energy. However, solar to hydrogen production via PEC system generally requires high external bias, because of material's innate electronic band potential relative to hydrogen reduction potential and/or charge separation issue. For spontaneous photo-water splitting, here, we design dye-sensitized solar cell (DSSC) and their monolithic tandem cell incorporated with a $BiVO_4$ photoanode. $BiVO_4$ has high conduction band edge potential and suitable band gap (2.4eV) to absorb visible light. To achieve efficient $BiVO_4$ photoanode system, electron and hole mobility should be improved, and we demonstrate a tandem cell in which $BiVO_4/WO_3$ film is connected to cobalt complex based DSSC.

Keywords

References

  1. F. F. Abdi, T. J. Savenije, M. M. May, B. Dam and R. van de Krol, J. Phys. Chem. Lett., 2013, 4, 2752-2757. https://doi.org/10.1021/jz4013257
  2. D. E. Wang, R. G. Li, J. Zhu, J. Y. Shi, J. F. Han, X. Zong and C. Li, J. Phys. Chem. C, 2012, 116, 5082-5089. https://doi.org/10.1021/jp210584b
  3. H. S. Park, K. E. Kweon, H. Ye, E. Paek, G. S. Hwang and A. J. Bard, J. Phys. Chem. C, 2011, 115, 17870-17879. https://doi.org/10.1021/jp204492r
  4. X. J. Shi, Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim and J. H. Park, Nat Commun, 2014, 5.
  5. S. J. Hong, S. Lee, J. S. Jang and J. S. Lee, Energ. Environ. Sci., 2011, 4, 1781-1787. https://doi.org/10.1039/c0ee00743a
  6. S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner and A. M. Herring, Energ. Environ. Sci., 2011, 4, 5028-5034. https://doi.org/10.1039/c1ee02444b
  7. S. Y. Chae, H. Jung, H. S. Jeon, B. K. Min, Y. J. Hwang and O. S. Joo, J. Mater. Chem. A., 2014, 2, 11408-11416. https://doi.org/10.1039/c4ta00702f
  8. K. N. Ding, B. Chen, Y. L. Li, Y. F. Zhang and Z. F. Chen, J. Mater. Chem. A., 2014, 2, 8294-8303. https://doi.org/10.1039/c3ta15367c
  9. J. Brillet, J. H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel and K. Sivula, Nat Photonics, 2012, 6, 823-827.
  10. T. W. Kim and K. S. Choi, Science, 2014, 343, 990-994. https://doi.org/10.1126/science.1246913