DOI QR코드

DOI QR Code

Crystal Structure and Comparative Sequence Analysis of GmhA from Colwellia psychrerythraea Strain 34H Provides Insight into Functional Similarity with DiaA

  • Do, Hackwon (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Yun, Ji-Sook (Department of Biology Education, Kyungpook National University) ;
  • Lee, Chang Woo (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Choi, Young Jun (Department of Biology Education, Kyungpook National University) ;
  • Kim, Hye-Yeon (Protein Structure Group, Korea Basic Science Institute) ;
  • Kim, Youn-Jung (Department of Marine Science, Incheon National University) ;
  • Park, Hyun (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Chang, Jeong Ho (Department of Biology Education, Kyungpook National University) ;
  • Lee, Jun Hyuck (Division of Polar Life Sciences, Korea Polar Research Institute)
  • Received : 2015.07.02
  • Accepted : 2015.09.15
  • Published : 2015.12.31

Abstract

The psychrophilic organism Colwellia psychrerythraea strain 34H produces extracellular polysaccharide substances to tolerate cold environments. Sedoheptulose 7-phosphate isomerase (GmhA) is essential for producing $\small{D}$-glycero-$\small{D}$-mannoheptose 7-phosphate, a key mediator in the lipopolysaccharide biosynthetic pathway. We determined the crystal structure of GmhA from C. psychrerythraea strain 34H (CpsGmhA, UniProtKB code: Q47VU0) at a resolution of $2.8{\AA}$. The tetrameric structure is similar to that of homologous GmhA structures. Interestingly, one of the catalytic residues, glutamate, which has been reported to be critical for the activity of other homologous GmhA enzymes, is replaced by a glutamine residue in the CpsGmhA protein. We also found differences in the conformations of several other catalytic residues. Extensive structural and sequence analyses reveal that CpsGmhA shows high similarity to Escherichia coli DnaA initiatorassociating protein A (DiaA). Therefore, the CpsGmhA structure reported here may provide insight into the structural and functional correlations between GmhA and DiaA among specific microorganisms.

Keywords

References

  1. Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R., and Leslie, A.G. (2011). iMOSFLM: a new graphical interface for diffractionimage processing with MOSFLM. Acta Crystallogr. Sect D: Biol. Crystallogr. 67, 271-281. https://doi.org/10.1107/S0907444910048675
  2. Bazaka, K., Crawford, R.J., Nazarenko, E.L., and Ivanova, E.P. (2011). Bacterial extracellular polysaccharides. In Bacterial adhesion (Springer), pp. 213-226.
  3. Brooke, J.S., and Valvano, M.A. (1996). Biosynthesis of inner core lipopolysaccharide in enteric bacteria identification and characterization of a conserved phosphoheptose isomerase. J. Biol. Chem. 271, 3608-3614. https://doi.org/10.1074/jbc.271.7.3608
  4. Carillo, S., Casillo, A., Pieretti, G., Parrilli, E., Sannino, F., Bayer-Giraldi, M., Cosconati, S., Novellino, E., Ewert, M., Deming, J.W., et al. (2015). A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco)proteins. J. Am. Chem. Soc. 137, 179-189. https://doi.org/10.1021/ja5075954
  5. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  6. Chattopadhyay, M. (2006). Mechanism of bacterial adaptation to low temperature. J. Biosci. 31, 157-165. https://doi.org/10.1007/BF02705244
  7. Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2009). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect D: Biol. Crystallogr. 66, 12-21.
  8. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., and Thompson, J.D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497-3500. https://doi.org/10.1093/nar/gkg500
  9. DeLano, W.L. (2002). The PyMOL molecular graphics system.
  10. Feller, G. (2013). Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo) 2013, 512840.
  11. Feller, G., and Gerday, C. (2003). Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1, 200-208. https://doi.org/10.1038/nrmicro773
  12. Gouet, P., Courcelle, E., and Stuart, D.I. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308. https://doi.org/10.1093/bioinformatics/15.4.305
  13. Harmer, N.J. (2010). The structure of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei reveals a zinc binding site at the heart of the active site. J. Mol. Biol. 400, 379-392. https://doi.org/10.1016/j.jmb.2010.04.058
  14. Holm, L., and Rosenstrom, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545-549. https://doi.org/10.1093/nar/gkq366
  15. Huston, A.L., Krieger-Brockett, B.B., and Deming, J.W. (2000). Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ. Microbiol. 2, 383-388. https://doi.org/10.1046/j.1462-2920.2000.00118.x
  16. Huston, A.L., Methe, B., and Deming, J.W. (2004). Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70, 3321-3328. https://doi.org/10.1128/AEM.70.6.3321-3328.2004
  17. Ishida, T., Akimitsu, N., Kashioka, T., Hatano, M., Kubota, T., Ogata, Y., Sekimizu, K., and Katayama, T. (2004). DiaA, a novel DnaAbinding protein, ensures the timely initiation of Escherichia coli chromosome replication. J. Biol. Chem. 279, 45546-45555. https://doi.org/10.1074/jbc.M402762200
  18. Junge, K., Eicken, H., Swanson, B.D., and Deming, J.W. (2006). Bacterial incorporation of leucine into protein down to-20 degrees C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52, 417-429. https://doi.org/10.1016/j.cryobiol.2006.03.002
  19. Keyamura, K., Fujikawa, N., Ishida, T., Ozaki, S., Su'etsugu, M., Fujimitsu, K., Kagawa, W., Yokoyama, S., Kurumizaka, H., and Katayama, T. (2007). The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP-DnaAspecific initiation complexes. Genes Dev. 21, 2083-2099. https://doi.org/10.1101/gad.1561207
  20. Kim, M.S., and Shin, D.H. (2009). A preliminary X-ray study of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65, 1110-1112. https://doi.org/10.1107/S174430910903259X
  21. Kneidinger, B., Graninger, M., Puchberger, M., Kosma, P., and Messner, P. (2001). Biosynthesis of nucleotide-activated Dglycero-D-manno-heptose. J. Biol. Chem. 276, 20935-20944. https://doi.org/10.1074/jbc.M100378200
  22. Krembs, C.e., Eicken, H., Junge, K., and Deming, J. (2002). High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res. Part I 49, 2163-2181.
  23. Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774-797. https://doi.org/10.1016/j.jmb.2007.05.022
  24. Marx, J.G., Carpenter, S.D., and Deming, J.W. (2009). Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J. Microbiol. 55, 63-72. https://doi.org/10.1139/W08-130
  25. Methe, B.A., Nelson, K.E., Deming, J.W., Momen, B., Melamud, E., Zhang, X.J., Moult, J., Madupu, R., Nelson, W.C., Dodson, R.J., et al. (2005). The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA 102, 10913-10918. https://doi.org/10.1073/pnas.0504766102
  26. Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., and Vagin, A.A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect D Biol. Crystallogr. 67, 355-367. https://doi.org/10.1107/S0907444911001314
  27. Natrajan, G., Hall, D.R., Thompson, A.C., Gutsche, I., and Terradot, L. (2007). Structural similarity between the DnaA-binding proteins HobA (HP1230) from Helicobacter pylori and DiaA from Escherichia coli. Mol. Microbiol. 65, 995-1005. https://doi.org/10.1111/j.1365-2958.2007.05843.x
  28. Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593-656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
  29. Pattengale, N.D., Alipour, M., Bininda-Emonds, O.R., Moret, B.M., and Stamatakis, A. (2010). How many bootstrap replicates are necessary? J. Comput. Biol. 17, 337-354. https://doi.org/10.1089/cmb.2009.0179
  30. Pikuta, E.V., Hoover, R.B., and Tang, J. (2007). Microbial extremophiles at the limits of life. Crit. Rev. Microbiol. 33, 183-209. https://doi.org/10.1080/10408410701451948
  31. Raetz, C.R., and Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635-700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  32. Russell, N.J. (1990). Cold adaptation of microorganisms. Philos. Trans. R Soc. Lond. B. Biol. Sci. 326, 595-608, discussion 608-511. https://doi.org/10.1098/rstb.1990.0034
  33. Russell, N.J. (1998). Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv. Biochem. Eng. Biotechnol. 61, 1-21.
  34. Seetharaman, J., Rajashankar, K.R., Solorzano, V., Kniewel, R., Lima, C.D., Bonanno, J.B., Burley, S.K., and Swaminathan, S. (2006). Crystal structures of two putative phosphoheptose isomerases. Proteins 63, 1092-1096. https://doi.org/10.1002/prot.20908
  35. Shen, B., Hohmann, S., Jensen, R.G., and Bohnert, H.J. (1999). Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol. 121, 45-52. https://doi.org/10.1104/pp.121.1.45
  36. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  37. Taylor, P.L., Blakely, K.M., de Leon, G.P., Walker, J.R., McArthur, F., Evdokimova, E., Zhang, K., Valvano, M.A., Wright, G.D., and Junop, M.S. (2008). Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants. J. Biol. Chem. 283, 2835-2845. https://doi.org/10.1074/jbc.M706163200
  38. Vagin, A., and Teplyakov, A. (2009). Molecular replacement with MOLREP. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 22-25.
  39. Vaguine, A.A., Richelle, J., and Wodak, S. (1999). SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. Sect D. Biol. Crystallogr. 55, 191-205. https://doi.org/10.1107/S0907444998006684
  40. Wells, L.E., and Deming, J.W. (2006). Characterization of a coldactive bacteriophage on two psychrophilic marine hosts. Aquat. Microb. Ecol. 45, 15-29. https://doi.org/10.3354/ame045015

Cited by

  1. Functional and structural studies on theNeisseria gonorrhoeaeGmhA, the first enzyme in theglycero-manno-heptose biosynthesis pathways, demonstrate a critical role in lipooligosaccharide synthesis and gonococcal viability vol.6, pp.2, 2017, https://doi.org/10.1002/mbo3.432
  2. Functional characterization of Helicobacter pylori 26695 sedoheptulose 7-phosphate isomerase encoded by hp0857 and its association with lipopolysaccharide biosynthesis and adhesion vol.477, pp.4, 2016, https://doi.org/10.1016/j.bbrc.2016.06.137
  3. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes vol.7, 2016, https://doi.org/10.3389/fmicb.2016.01408
  4. A half-site multimeric enzyme achieves its cooperativity without conformational changes vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-16421-2
  5. Enzymes from Marine Polar Regions and Their Biotechnological Applications vol.17, pp.10, 2015, https://doi.org/10.3390/md17100544
  6. Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools vol.21, pp.None, 2015, https://doi.org/10.2174/1389202921999200601144137
  7. Structural and functional characterization of M. tuberculosis sedoheptulose- 7-phosphate isomerase, a critical enzyme involved in lipopolysaccharide biosynthetic pathway vol.10, pp.1, 2015, https://doi.org/10.1038/s41598-020-77230-8