Acknowledgement
Supported by : Algerian National Thematic Agency of Research in Science and Technology (ATRST), university of Sidi Bel Abbes (UDL SBA) in Algeria
References
- Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
- Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49, 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
- Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013) "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
- Chiu, M.S. and Chen, T. (2011a), "Higher-order surface stress effects on buckling of nanowires under uniaxial compression", Procedia Eng., 10, 397-402. https://doi.org/10.1016/j.proeng.2011.04.067
- Chiu, M.S. and Chen, T.Y. (2011b), "Effects of high-order surface stress on static bending behavior of nanowires", Physica E, 44(3), 714-718. https://doi.org/10.1016/j.physe.2011.11.016
- Craighead, H.G. (2000), "Nanoelectromechanical systems", Sci., 290, 1532-1535. https://doi.org/10.1126/science.290.5496.1532
- Dingreville, R., Qu, J. and Cherkaoui, M. (2005), "Surface free energy and its effects on the elastic behavior of nanosized particles, wires and films", J. Mech. Phys. Solid., 53(8), 1827-1954. https://doi.org/10.1016/j.jmps.2005.02.012
- Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
- Duan, H.L., Wang, J., Huang, Z.P. and Karihaloo, B.L. (2005), "Size dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress", J. Mech. Phys. Solid., 53, 1574-1596. https://doi.org/10.1016/j.jmps.2005.02.009
- Ekinci, K.L. and Roukes, M.L. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum., 76, 061101. https://doi.org/10.1063/1.1927327
- Eltaher, M., Khater, M., Abdel-Rahman, E. and Yavuz, M. (2014), "A model for nano bonding wires under thermal loading", IEEE-Nano 2014, Toronto, Canada.
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 57, 291-323. https://doi.org/10.1007/BF00261375
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid. Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Hosseini-Hashemi, Sh., Fakher, M. and Nazemnezhad, R. (2013), "Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler-Bernoulli and Timoshenko", J. Solid Mech., 5(3), 290-304.
- He, J. and Lilley, C.M. (2008a), "Surface effect on the elastic behavior of static bending nanowires", Nano Lett., 8, 1798-1802. https://doi.org/10.1021/nl0733233
- He, J. and Lilley, C.M. (2008b), "Surface effect on the elastic behavior of static bending nanowires", Appl. Phys. Lett., 93, 263108. https://doi.org/10.1063/1.3050108
- He, L.H. and Lim, C.W. (2001), "On the bending of unconstrained thin crystalline plates caused by the change in surface stress", Surf. Sci., 478(3), 203-210. https://doi.org/10.1016/S0039-6028(01)00953-0
- Gurtin, M.E., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag. A, 78, 1093-1109. https://doi.org/10.1080/01418619808239977
- Jiang, L.Y. and Yan, Z. (2010), "Timoshenko beam model for static bending of nanowires with surface effects", Physica E, 42, 2274-2279. https://doi.org/10.1016/j.physe.2010.05.007
- Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
- Li, B., Li, C.X. and Wei, C.L. (2011), "Surface effects on the postbuckling of nanowires", Chin. Phys. Lett., 28(4), 046202. https://doi.org/10.1088/0256-307X/28/4/046202
- Liu, J.L., Mei, Y., Xia, R. and Zhu, W.L. (2012), "Large displacement of a static bending nanowire with surface effects", Physica E, 44, 2050-2055. https://doi.org/10.1016/j.physe.2012.06.009
- Lu, P., He, L.H., Lee, H.P. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solid. Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
- Mahmoud F., Eltaher M., Alshorbagy A. and Meletis E. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Tech., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z
- Park, H.S. and Klein, P.A. (2008), "Surface stress effects on the resonant properties of metal nanowires: The importance of finite deformation kinematics and the impact of the residual surface stress", J. Mech. Phys. Solid., 56, 3144-3166. https://doi.org/10.1016/j.jmps.2008.08.003
- Park, H.S. (2008), "Surface stress effects on the resonant properties of silicon nanowires", J. Appl. Phys., 103, 123504. https://doi.org/10.1063/1.2939576
- Park, H.S. (2009), "Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered", Nanotechnol., 20, 115701. https://doi.org/10.1088/0957-4484/20/11/115701
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (2002), Energy principles and variational methods in applied mechanics, John Wiley & Sons Inc.
- Sharma, P., Ganti, S. and Bhate, N. (2003), "Effect of surfaces on the size dependent elastic state of nano-inhomogeneities", Appl. Phys. Lett., 82, 535-537. https://doi.org/10.1063/1.1539929
- Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous mono- clinic plates", Acta Mech., 94(3), 195-220. https://doi.org/10.1007/BF01176650
- Song, F. and Huang, G.L. (2009), "Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory", Phys. Lett. A, 373, 3969-3973. https://doi.org/10.1016/j.physleta.2009.08.065
- Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94, 141913. https://doi.org/10.1063/1.3117505
- Wang, G.F. and Yang, F. (2011), "Postbuckling analysis of nanowires with surface effects", J. Appl. Phys., 109, 063535. https://doi.org/10.1063/1.3562138
- Yan, Z. and Jiang, L.Y. (2011), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotechnol., 22, 245703-245709. https://doi.org/10.1088/0957-4484/22/24/245703
Cited by
- Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
- Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
- Elastic buckling of current-carrying double-nanowire systems immersed in a magnetic field vol.227, pp.12, 2016, https://doi.org/10.1007/s00707-016-1679-1
- Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
- Surface and shear energy effects on vibrations of magnetically affected beam-like nanostructures carrying direct currents vol.113, 2016, https://doi.org/10.1016/j.ijmecsci.2016.05.002
- Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
- Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams vol.7, pp.6, 2019, https://doi.org/10.12989/anr.2019.7.6.391
- Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle vol.8, pp.2, 2015, https://doi.org/10.12989/anr.2020.8.2.135
- Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory vol.8, pp.3, 2015, https://doi.org/10.12989/anr.2020.8.3.191
- Post-buckling analysis of aorta artery under axial compression loads vol.8, pp.3, 2020, https://doi.org/10.12989/anr.2020.8.3.255
- Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM vol.8, pp.4, 2015, https://doi.org/10.12989/anr.2020.8.4.283