DOI QR코드

DOI QR Code

Evaluation of Probabilistic Fatigue Crack Propagation Models in Mg-Al-Zn Alloys Under Maximum Load Conditions Using Residual of Random Variable

최대하중조건에 따른 Mg-Al-Zn 합금의 확률변수 잔차를 이용한 확률론적 피로균열전파모델 평가

  • 최선순 (삼육대학교 카메카트로닉스학과)
  • Received : 2014.08.26
  • Accepted : 2014.11.06
  • Published : 2015.01.01

Abstract

The primary aim of this paper is to evaluate the probabilistic fatigue crack propagation models using the residual of a random variable and to present the probabilistic model fit for the probabilistic fatigue crack growth behavior in Mg-Al-Zn alloys under maximum load conditions. The models used in this study were prepared by applying a random variable to empirical fatigue crack propagation models such as the Paris-Erdogan model, Walker model, Forman model, and modified Forman model. It was verified that the good models for describing the stochastic variation of the fatigue crack propagation behavior in Mg-Al-Zn alloys under maximum load conditions were the 'probabilistic Paris-Erdogan model' and 'probabilistic Walker model'. The influence of the maximum load conditions on the stochastic variation of fatigue crack growth is also considered.

본 논문의 주 목적은 최대하중조건을 변화시키면서 확률변수의 잔차를 이용하여 확률론적 피로균열전파모델들을 평가하고, Mg-Al-Zn 합금의 피로균열성장거동의 변동성을 묘사하기에 적합한 확률론적 모델을 제시하는 것이다. 평가에 사용된 모델은 피로균열성장의 변동성을 나타내기 위하여 실험적 피로균열전파모델인 Paris-Erdogan 모델, Walker 모델, Forman 모델과 수정 Forman 모델에 확률변수를 도입한 모델이다. 최대하중조건에 따른 Mg-Al-Zn 합금의 피로균열전파거동의 확률적 변동성을 묘사하기에 적합한 모델은 '확률론적 Paris-Erdogan 모델'과 '확률론적 Walker 모델'임을 밝혔으며, 최대하중조건이 피로균열성장의 확률적 변동성에 미치는 영향 또한 고찰하였다.

Keywords

References

  1. Mordike, B. L. and Ebert, T., 2001, "Magnesium Properties-Application-Potential," Materials Science & Engineering (A), Vol. 302, pp. 37-45. https://doi.org/10.1016/S0921-5093(00)01351-4
  2. Tokaji, K., Nakajima, M., and Uematsu, Y., 2009, "Fatigue Crack Propagation and Fracture Mechanisms of Wrought Magnesium Alloys in Different Environments," International Journal of Fatigue, Vol. 31, Issue 7, pp. 1137-1143. https://doi.org/10.1016/j.ijfatigue.2008.12.012
  3. Tokaji, K., Kamakura, M., Ishiizumi, Y. and Hasegawa, N., 2004, "Fatigue Behaviour and Fracture Mechanism of a Rolled AZ31 Magnesium Alloy," International Journal of Fatigue, Vol. 26, pp.1217-1224. https://doi.org/10.1016/j.ijfatigue.2004.03.015
  4. Zeng, R. C., Ke, W. and Han, E. H., 2009, "Influence of Load Frequency and Ageing Heat Treatment on Fatigue Crack Propagation Rate of as-Extruded AZ61 Alloy," International Journal of Fatigue, Vol. 31, pp.463-477. https://doi.org/10.1016/j.ijfatigue.2008.07.005
  5. Ishihara, S., McEvily, A. J., Sato, M., Shibata, H., Goshima, T. and Shimizu, M., 2008, "Fatigue Lives and Crack Propagation Behavior of the Extruded Magnesium Alloy Processed Under Various Extrusion Conditions," Journal of Solid Mechanics and Materials Engineering, Vol. 2, pp.487-495. https://doi.org/10.1299/jmmp.2.487
  6. Sivapragash, M., Lakshminarayanan, P. R., and Karthikeyan, R., 2008, "Fatigue Life Prediction of ZE41A Magnesium Alloy Using Weibull Distribution," Materials and Design, Vol. 29, pp. 1549-1553. https://doi.org/10.1016/j.matdes.2008.01.001
  7. Choi, S. S., 2012, "A Study of Probabilistic Fatigue Crack Propagation Models in Mg-Al-Zn Alloys Under Different Specimen Thickness Conditions by Using the Residual of a Random Variable," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 4, pp. 379-386. https://doi.org/10.3795/KSME-A.2012.36.4.379
  8. ASTM E647-00, 2000, Standard Test Method of Fatigue Crack Growth Rates, ASTM International. Pennsylvania.
  9. Haldar, A., Mahadevan, S., 2000, Probability, Reliability, and Statistical Methods in Engineering design, John Wiley & Sons Inc., U.S.A.
  10. Choi, S. S., 2010, "A Study on Probabilistic Fatigue Crack Propagation Model in Mg-Al-Zn Alloy Under Maximum Load Conditions (I) : Using Residual of Random Variable," Proceedings of the KOSME Fall Conference 2010.