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ADMIXABLE OPERATORS AND A TRANSFORM

SEMIGROUP ON ABSTRACT WIENER SPACE

Seung Jun Chang, Jae Gil Choi, and David Skoug

Abstract. The purpose of this paper is first of all to investigate the
behavior of admixable operators on the product of abstract Wiener spaces
and secondly to examine transform semigroups which consist of admix-
Wiener transforms on abstract Wiener spaces.

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space, that is the space of all
real-valued continuous functions x on [0, T ] with x(0) = 0. Let M denote the
class of all Wiener measurable subsets of C0[0, T ] and let mw denote Wiener
measure. Then (C0[0, T ],M,mw) is a complete measure space.

In [1], Bearman presented a seminal result for Wiener integral on product
Wiener space. It can be summarized as follows:

Theorem 1.1. Let F be a mw × mw-integrable functional on C2
0 [0, T ], the

product of 2 copies of the Wiener space C0[0, T ], and let θ be a function of

bounded variation on [0, T ]. Let Tθ : C2
0 [0, T ] → C2

0 [0, T ] be the transformation

defined by Tθ(w, z) = (x, y) with

(1.1)

{
x(t) =

∫ t

0
cos θ(s)dw(s) −

∫ t

0
sin θ(s)dz(s),

y(t) =
∫ t

0 sin θ(s)dw(s) +
∫ t

0 cos θ(s)dz(s).

Then the transform Tθ is measure preserving and

(1.2)∫

C2

0
[0,T ]

F(Tθ(w, z))d(mw ×mw)(w, z) =

∫

C2

0
[0,T ]

F(x, y)d(mw ×mw)(x, y).

As a special case of (1.2), one can see that for any Wiener integrable func-
tional F on C0[0, T ] and all θ ∈ R,

(1.3)

∫

C2

0
[0,T ]

F (w cos θ + z sin θ)d(mw ×mw)(w, z) =

∫

C0[0,T ]

F (x)dmw(x).
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In view of equation (1.2), we see that the Wiener measure mw×mw is rota-
tion invariant. Equation (1.3) has played an important role in various research
areas in mathematics and physics involving Wiener integration theory. Equa-
tion (1.3) with the change of scale of Wiener measure was further developed
by Cameron and Storvick [2] and by Johnson and Skoug [10] in their studies
of Wiener integral equations. In [14], Lee extended equation (1.3) on the com-
plexification of abstract Wiener space to study the solutions of the differential
equation which is called a Cauchy problem.

The results obtained in this paper are established in three sections. In
Section 3 we obtain a rotation property for admixable operators on the product
of abstract Wiener spaces. In Section 4 we apply our rotation property from
Section 3 to prove Bearman’s rotation property, namely Theorem 1.1 above. In
Section 5 we define an admix-Wiener transform on abstract Wiener space and
proceed to show that the admix-Wiener transforms form a transform semigroup
on abstract Wiener space.

2. Preliminaries

Let H be a real separable infinite-dimensional Hilbert space with inner prod-
uct 〈·, ·〉 and norm | · | =

√
〈·, ·〉. Let ‖ · ‖0 be a measurable norm on H with

respect to the Gaussian cylinder set measure ν0 on H . Let B denote the com-
pletion of H with respect to ‖ · ‖0. Let i denote the natural injection from H
to B. The adjoint operator i∗ of i is one to one and maps B∗ continuously
onto a dense subset of H∗, where B∗ and H∗ are topological duals of B and
H , respectively. By identifying H∗ with H , and B∗ with i∗B∗, we have a triple
B∗ ⊂ H∗ ≈ H ⊂ B and 〈x, y〉 = (x, y) for all x in H and y in B∗, where (·, ·)
denotes the natural dual pairing between B and B∗. By the well-known result
of Gross [7], ν0 ◦ i

−1 provides a unique countably additive extension, ν, to the
Borel σ-algebra B(B) of B. ν is a probability measure on the Borel σ-algebra
B(B) of B which satisfies

(2.1)

∫

B

exp{i(y, x)}dν(x) = exp

{
−

1

2
|y|2

}
for every y ∈ B∗.

The triple (B,H, ν) is called an abstract Wiener space. For more details, see
[4, 7, 12, 13].

Let {ej}∞j=1 be a complete orthonormal set in H such that the ej’s are in
B∗. For each h ∈ H and x ∈ B, we define the stochastic inner product (h, x)∼

by

(h, x)∼ =

{
lim
n→∞

∑n
j=1〈h, ej〉(ej , x), if the limit exists,

0, otherwise.

For every h(6= 0) in H , (h, x)∼ exists for ν-a.e. x ∈ B and it is a Gaussian
random variable on B with mean zero and variance |h|2, i.e., equation (2.1)
holds with y ∈ B∗ replaced with h ∈ H . In fact, the stochastic inner product
(h, x)∼ is essentially independent of the choice of the complete orthonormal set
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used in its definition. Also, if both h and x are in H , then Parseval’s identity
gives (h, x)∼ = 〈h, x〉. Furthermore, (h, λx)∼ = (λh, x)∼ = λ(h, x)∼ for any
λ ∈ R, h ∈ H and x ∈ B. We also see that if {h1, . . . , hn} is an orthogonal set
in H , then the random variables (hj , x)

∼’s are independent.
Next we state the definition of the admixable operator on B. For more

details, see [3].

Definition 2.1. Let ⊙ be an operation between H and B∗, which satisfies the
conditions:

(a1) B∗ ×B∗ ∋ (g1, g2) 7→ g1 ⊙ g2 = g2 ⊙ g1 ∈ B∗.
(a2) H ×B∗ ∋ (h, g) 7→ h⊙ g = g ⊙ h ∈ H .
(a3) For every h ∈ H and every g1, g2 ∈ B∗,

(h⊙ g1)⊙ g2 = h⊙ (g1 ⊙ g2).

(a4) For every h1, h2 ∈ H and every g ∈ B∗,

(h1 + h2)⊙ g = h1 ⊙ g + h2 ⊙ g.

(a5) For every g1, g2 ∈ B∗, there exists g3 ∈ B∗ such that

(2.2) g⊙2
1 + g⊙2

2 = g⊙2
3 ,

where g⊙2 = g ⊙ g. In this case, we write

(2.3) g3 ≡ ⊙

√
g⊙2
1 + g⊙2

2 ≡ s(g1, g2).

(a6) For every h1, h2 ∈ H and every g ∈ B∗,

〈h1, h2 ⊙ g〉 = 〈h1 ⊙ g, h2〉.

Given g ∈ B∗, let Ag : B → B be a linear operator associated with g. The
operator Ag is said to be g⊙-admixable, provided (h,Agx)

∼ = (h ⊙ g, x)∼ for
all h ∈ H .

For a finite subset V = {v1, . . . , vm} of H , let XV : B → R
m denote the

random vector given by

(2.4) XV(x) ≡
(
(v1, x)

∼, . . . , (vm, x)
∼
)
.

A functional F is called a cylinder-type functional on B if there exists a linearly
independent subset V = {v1, . . . , vm} of H such that

(2.5) F (x) = ψ
(
(v1, x)

∼, . . . , (vm, x)
∼
)
≡ ψ

(
XV(x)

)
, x ∈ B,

where ψ is a complex-valued Borel measurable function on R
m. It is easy to

show that for the cylinder-type functional F of the form (2.5), there exists an
orthogonal subset H = {h1, . . . , hn} of H such that F is expressed as

(2.6) F (x) = f
(
(h1, x)

∼, . . . , (hn, x)
∼
)
≡ f

(
XH(x)

)
, x ∈ B,

where f is a complex-valued Borel measurable function on R
n. Thus, we loose

no generality in assuming that every cylinder-type functional on B is of the
form (2.6).
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For g ∈ B∗, let Ag be the g⊙-admixable operator on B and let F be given
by equation (2.6). Then

F (Agx) = f
(
(h1, Agx)

∼, . . . , (hn, Agx)
∼
)

= f
(
(h1 ⊙ g, x)∼, . . . , (hn ⊙ g, x)∼

)
.

Even though the subsetH = {h1, . . . , hn} ofH is orthogonal, the subsetH⊙g ≡
{h ⊙ g : h ∈ H} of H need not be orthogonal. However, applying the Gram-
Schmidt procedure, we can find an orthogonal subset {k1, . . . , km} (m may be
less than n) and a Borel measurable function f∗ : Rm → C such that

F (Agx) = f∗
(
(k1, x)

∼, . . . , (km, x)
∼
)
.

In view of these observations, we shall always choose g ∈ B∗ for the admixable
operator Ag, so that H⊙ g is orthogonal in H .

Let H = {h1, . . . , hn} be an orthogonal subset of H which has no zero and
let O(H) be the class of all elements g ∈ B∗ such that H ⊙ g is orthogonal in
H . Because dimH = ∞, infinitely many elements, g, exist in O(H).

Example 2.2. For any orthogonal subset H = {h1, . . . , hn} of H , each of
whose element is a nonzero element of B∗, let L(S) be the subspace of H
which is spanned by the set S = {hi ⊙ hj : 1 ≤ i < j ≤ n}, and let L(S)⊥ be
the orthogonal complement of L(S). Let

P(H) = {g ∈ B∗ : g⊙2 ∈ L(S)⊥ and |g| > 0}.

Since dimL(S) is finite and B∗ is dense in H , dim(L(S)⊥ ∩ B∗) = ∞ and so
P(H) has infinitely many elements.

Let g be an element of P(H). Without loss of generality, we may assume
that |hj ⊙ g| > 0 for all j ∈ {1, . . . , n}. By the conditions of the operation ⊙
and the definition of the P(H), it follows that for i, j ∈ {1, . . . , n} with i 6= j,

〈hi ⊙ g, hj ⊙ g〉 = 〈hi ⊙ g, g ⊙ hj〉 = 〈hi ⊙ g ⊙ hj , g〉

= 〈hi ⊙ hj ⊙ g, g〉 = 〈hi ⊙ hj , g ⊙ g〉

= 〈hi ⊙ hj , g
⊙2〉 = 0.

From this, we see that H⊙ g ≡ {h1 ⊙ g, . . . , hn ⊙ g} is an orthogonal subset of
H for any g in P(H), i.e., P(H) ⊂ O(H).

The following two lemmas will be very useful in the next section where we
establish a rotation property for Wiener integrals using admixable operators.

Lemma 2.3. Let (B,H, ν) be an abstract Wiener space. Let A = {α1, . . . , αn}
be an orthogonal set in H, let XA be given by (2.4) with V replaced with A and
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let f : Rn → C be a Borel measurable function. Then

(2.7) ∫

B

f
(
XA(x)

)
dν(x) ≡

∫

B

f
(
(α1, x)

∼, . . . , (αn, x)
∼
)
dν(x)

∗
=

( n∏

j=1

2π|αj |
2

)−1/2 ∫

Rn

f(u1, . . . , un) exp

{
−

n∑

j=1

u2j
2|αj |2

}
du1 · · · dun,

where by
∗
= we mean that if either side exists, both sides exist and equality

holds.

Lemma 2.4. Let (B,H, ν) be an abstract Wiener space. Let R : B × B →
R

m be a R
m-valued Gaussian random vector. Then for any Borel measurable

function f : Rm × R
m → C,

∫

B×B

f
(
R(w, z)

)
d(ν × ν)(w, z)

∗
=

(
(2π)m detV

)−1/2
∫

Rm

f(~u) exp

{
−

1

2
~uV −1~uT

}
d~u,

where V is the covariance matrix of the random vector R and ~uT denotes the

transpose of the vector ~u = (u1, . . . , um) ∈ R
m.

In order to simplify various expressions in our results below, we adopt the
following notations:

f(~u) ≡ f(u1, . . . , un),

and

f
(
~u+XA(x)

)
≡ f

(
u1 + (α1, x)

∼, . . . , un + (αn, x)
∼
)

for ~u = (u1, . . . , un) ∈ R
n and A = {α1, . . . , αn} ⊂ H .

3. A rotation via admixable operator

Given an orthogonal set H in H , let GH(B2) be the class of all ν × ν-
integrable functionals, F : B ×B → C, given by

(3.1)
F(x, y) = f((h1, x)

∼, . . . , (hn, x)
∼; (h1, y)

∼, . . . , (hn, y)
∼)

≡ f
(
XH(x);XH(y)

)

for ν×ν-a.e. (x, y) ∈ B×B, where f : R2n → C is a Borel measurable function.
The following theorem plays a key role in the proof of Theorem 1.1 above.

Theorem 3.1. Let (B,H, ν) be an abstract Wiener space. Let H={h1, . . . , hn}
be an orthogonal subset of H which has no zero, and let F ∈ GH(B2) be given

by (3.1). Let g1 and g2 be nonzero elements in O(H) and for each k ∈ {1, 2},
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let Agk be the g⊙k -admixable operator on B. Then

(3.2)

∫

B2

F
(
Ag1w −Ag2z, Ag2w +Ag1z

)
d(ν × ν)(w, z)

=

∫

B2

F
(
As(g1,g2)x,As(g1,g2)y

)
d(ν × ν)(x, y).

It will be helpful to establish the following two lemmas before giving the
proof of Theorem 3.1.

Lemma 3.2. Let H = {h1, . . . , hn} be an orthogonal subset of H and let g1 and

g2 be nonzero elements in O(H). For each j ∈ {1, . . . , n}, let Sj , Tj : B×B → R

be given by

(3.3) Sj(w, z) = (hj , Ag1w)
∼ − (hj , Ag2z)

∼

and

(3.4) Tj(w, z) = (hj , Ag2w)
∼ + (hj , Ag1z)

∼,

respectively, where Ag denotes the g⊙-admixable operator. Then

(3.5) R = {S1, . . . , Sn, T1, . . . , Tn}

is a set of independent Gaussian random variables.

Proof. We note that for each k ∈ H , (k, x)∼ has a Gaussian distribution with
mean zero and variance |k|2. Using this fact, we observe that for k1, k2 ∈ H ,

(3.6)

∫

B

(k1, x)
∼(k2, x)

∼dν(x) = 〈k1, k2〉.

However, using (3.6) and Fubini’s theorem, we have that for all j, l ∈ {1, . . . , n}
with j 6= l, ∫

B2

Sj(w, z)Sl(w, z)d(ν × ν)(w, z)

= 〈hj ⊙ g1, hl ⊙ g1〉+ 〈hj ⊙ g2, hl ⊙ g2〉 = 0

and ∫

B2

Tj(w, z)Tl(w, z)d(ν × ν)(w, z)

= 〈hj ⊙ g2, hl ⊙ g2〉+ 〈hj ⊙ g1, hl ⊙ g1〉 = 0.

Also, we have that for all j, l ∈ {1, . . . , n},
∫

B2

Sj(w, z)Tl(w, z)d(ν × ν)(w, z)

= 〈hj ⊙ g1, hl ⊙ g2〉 − 〈hj ⊙ g2, hl ⊙ g1〉 = 0,

because

〈hj ⊙ g2, hl ⊙ g1〉 = 〈hj ⊙ g2 ⊙ g1, hl〉

= 〈hj ⊙ g1 ⊙ g2, hl〉 = 〈hj ⊙ g1, hl ⊙ g2〉.
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From these facts above, we observe that for any X,Y ∈ R with X 6= Y ,
Cov(X,Y ) = 0, which completes the proof of this lemma. �

The following lemma follows from Lemma 3.2.

Lemma 3.3. Let H, g1 and g2 be as in Lemma 3.2. Then the Gaussian random

vectors

R1
g1,g2 : B ×B → R

n, R1
g1,g2(w, z) = XH(Ag1w) −XH(Ag2z)

and

R2
g1,g2 : B ×B → R

n, R2
g1,g2(w, z) = XH(Ag2w) +XH(Ag1z)

are independent. Furthermore, the covariance matrix of R1
g1,g2 and R2

g1,g2 is

given by

(Cov(X,Y ))X,Y ∈R,

where R is given by (3.5) above.

We note that the determinant of the matrix (Cov(X,Y ))X,Y ∈R is given by

det(Cov(X,Y ))X,Y ∈R = trace(Cov(X,Y ))X,Y ∈R

=
n∑

j=1

(
|hj ⊙ g1|

2 + |hj ⊙ g2|
2
)
.

We are now finally ready to give the proof of Theorem 3.1.

Proof of Theorem 3.1. Using equations (3.3) and (3.4), we observe that for
(w, z) ∈ B ×B,

XH

(
Ag1w

)
−XH

(
Ag2z

)
=

(
S1(w, z), . . . , Sn(w, z)

)

and

XH

(
Ag2w

)
+XH

(
Ag1z

)
=

(
T1(w, z), . . . , Tn(w, z)

)
.

Thus, using these, (3.1), and Fubini’s theorem, and applying Lemmas 3.3 and
2.4, we obtain

(3.7)

∫

B×B

F
(
Ag1w −Ag2z, Ag2w +Ag1z

)
d(ν × ν)(w, z)

=

∫

B×B

f
(
S1(w, z), . . . , Sn(w, z);T1(w, z), . . . , Tn(w, z)

)
d(ν × ν)(w, z)

=

( n∏

j=1

2π
(
|hj ⊙ g1|

2 + |hj ⊙ g2|
2
))−1

×

∫

R2n

f
(
~u;~v) exp

{
−

n∑

j=1

u2j + v2j
2(|hj ⊙ g1|2 + |hj ⊙ g2|2)

}
d~ud~v.
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Now, let βj = hj ⊙ s(g1, g2) for each j ∈ {1, . . . , n}. Then we have that for
all j, l ∈ {1, . . . , n} with j 6= l,

(3.8)

〈βj , βl〉 =
〈
hj ⊙ s(g1, g2), hl ⊙ s(g1, g2)

〉

=
〈
hj ⊙ s(g1, g2)⊙ s(g1, g2), hl

〉

=
〈
hj ⊙ (g⊙2

1 + g⊙2
2 ), hl

〉

= 〈hj ⊙ g⊙2
1 , hl〉+ 〈hj ⊙ g⊙2

2 , hl〉

= 〈hj ⊙ g1, hl ⊙ g1〉+ 〈hj ⊙ g2, hl ⊙ g2〉 = 0

and that for each j ∈ {1, . . . , n},

(3.9)

|βj |
2 = |hj ⊙ s(g1, g2)|

2 =
〈
hj ⊙ s(g1, g2), hj ⊙ s(g1, g2)

〉

= 〈hj ⊙ g1, hj ⊙ g1〉+ 〈hj ⊙ g2, hj ⊙ g2〉

= |hj ⊙ g1|
2 + |hj ⊙ g2|

2.

Hence, from (3.8) and (3.9), we see that B = {β1, . . . , βn} is an orthogonal set
in H and that the stochastic inner products

(βj , x)
∼ = (hj ⊙ s(g1, g2), x)

∼ = (hj , As(g1,g2)x)
∼, j ∈ {1, . . . , n}

form a set of independent Gaussian random variables on B with mean zero
and variance |hj ⊙ g1|2 + |hj ⊙ g2|2. Also, using Fubini’s theorem and (2.7), we
obtain
(3.10)∫

B2

F
(
As(g1,g2)x,As(g1,g2)y

)
d(ν × ν)(x, y)

=

∫

B2

f
(
(β1, x)

∼, . . . , (βn, x)
∼; (β1, y)

∼, . . . , (βn, y)
∼
)
d(ν × ν)(x, y)

=

∫

B

[ ∫

B

f
(
XB(x);XB(y)

)
dν(x)

]
dν(y)

=

( n∏

j=1

2π
(
|hj ⊙ g1|

2 + |hj ⊙ g2|
2
))−1/2

×

∫

B

[∫

Rn

f
(
~u;XB(y)

)
exp

{
−

n∑

j=1

u2j
2(|hj ⊙ g1|2 + |hj ⊙ g2|2)

}
d~u

]
dν(y)

=

( n∏

j=1

2π
(
|hj ⊙ g1|

2 + |hj ⊙ g2|
2
))−1

×

∫

R2n

f
(
~u;~v

)
exp

{
−

n∑

j=1

u2j + v2j
2(|hj ⊙ g1|2 + |hj ⊙ g2|2)

}
d~ud~v.

Equation (3.2) now follows from equations (3.7) and (3.10). �
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4. Classical Wiener space

Let B be the space C0[0, T ] of all real-valued continuous functions x(t) on the
compact interval [0, T ] with x(0) = 0, and equip B = C0[0, T ] with the uniform
norm ‖x‖ = supt∈[0,T ] |x(t)|. Let H = C′

0[0, T ] be the real separable infinite

dimensional Hilbert space consisting of the absolutely continuous functions h(t)
such that h(0) = 0 and whose derivative Dh ≡ dh/dt is in L2[0, T ]. The inner
product on H is given by

〈h1, h2〉 =

∫ T

0

Dh1(s)Dh2(s)ds.

Let ν = mw be the classical Wiener measure characterized by

mw({x : x(t) ≤ a}) =
1

√
2πt

∫ a

−∞

exp

{
−
u2

2t

}
du.

Then (C0[0, T ], C
′
0[0, T ],mw) is one of the most important examples of an ab-

stract Wiener space. For more details, see [4, 13].
Let I be the unitary operator from L2[0, T ] onto C

′
0[0, T ] given by Iv(t) =∫ t

0
v(s)ds for v ∈ L2[0, T ]. Let S[0, T ] be the space of real-valued functions on

[0, T ] which are continuous except for a finite number of finite jump disconti-
nuities and are of bounded variation on [0, T ], and let

C∗
0 [0, T ] = {Iv : v ∈ S[0, T ]}.

For any h ∈ C′
0[0, T ] and g ∈ C∗

0 [0, T ], let the operation ⊙ between C′
0[0, T ]

and C∗
0 [0, T ] be defined by

(4.1) h⊙ g = I(DhDg),

where DhDg denotes the pointwise multiplication of the functions Dh and Dg.
Then (C∗

0 [0, T ],⊙) is a commutative algebra with the identity e(t) = t.
It is easy to verify that {x(t) : (x, t) ∈ C0[0, T ]× [0, T ]} is a standard Wiener

process on the probability space (C0[0, T ],B(C0[0, T ]),mw).
Note that if {en}∞n=1 is a complete orthonormal set of functions in C′

0[0, T ],
then {Den}∞n=1 is also a complete orthonormal set of functions in L2[0, T ] and

(h, x)∼ equals the Paley-Wiener-Zygmund stochastic integral
∫ T

0
Dh(t)d̃x(t)

for each h ∈ C′
0[0, T ] and mw-a.e. x ∈ C0[0, T ], see [11, 15, 16].

Let g ∈ C′
0[0, T ] with |g| =

√
〈g, g〉 > 0. Then, the stochastic integral

Zg(x, t) =

∫ t

0

Dg(s)d̃x(s), t ∈ [0, T ],

which was introduced by Park and Skoug in [17], is a Gaussian process with
mean zero and covariance function

∫

C0[0,T ]

Zg(x, s)Zg(x, t)dmw(x) =

∫ min{s,t}

0

(Dg(u))2du.
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In addition, Zg(x, t) is stochastically continuous in t on [0, T ]. For more detailed
information about this process, see [5, 8, 18, 19]. Furthermore, if g is an element
of C∗

0 [0, T ], then for all x ∈ C0[0, T ], Zg(x, t) is continuous in t, and so Zg(x, ·)
is in C0[0, T ].

From [5, Lemma 1], we note that for each h ∈ C′
0[0, T ] and each g ∈ C′

0[0, T ]
with Dg ∈ L∞[0, T ],

∫ T

0

Dh(t)d̃Zg(x, t) =

∫ T

0

Dh(t)Dg(t)d̃x(t)

for mw-a.e. x ∈ C0[0, T ]. We note that Dg is an element of L∞[0, T ] for every
g ∈ C∗

0 [0, T ].
Given g ∈ C∗

0 [0, T ], define an operator Aw
g : C0[0, T ] → C0[0, T ] by

(4.2) Aw
g x = Zg(x, ·).

Then, for all h ∈ C′
0[0, T ],

(h,Aw
g x)

∼ =

∫ T

0

Dh(t)d̃Zg(x, t) =

∫ T

0

Dh(t)Dg(t)d̃x(t) = (h⊙ g, x)∼.

Thus, Aw
g is g⊙-admixable in view of Definition 2.1 above.

We will now introduce the family of functions Γ ≡ {γτ : τ ∈ [0, T ]} from
C′

0[0, T ]:

(4.3) γτ (s) =

{
s, s ∈ [0, τ ],

τ, s ∈ [τ, T ].

These functions have the reproducing property,

〈h, γτ 〉 =

∫ T

0

Dh(s)Dγτ (s)ds =

∫ T

0

Dh(s)χ[0,τ ](s)ds =

∫ τ

0

Dh(s)ds = h(τ)

for all h ∈ C′
0[0, T ]. In fact, Γ ⊂ C∗

0 [0, T ].
From the observations above, we obtain the following proposition.

Proposition 4.1. For τ ∈ [0, T ], let γτ be given by equation (4.3) and for a

function θ(·) of bounded variation on [0, T ], let

(4.4) Θc(t) =

∫ t

0

cos θ(s)ds, 0 ≤ t ≤ T

and

(4.5) Θs(t) =

∫ t

0

sin θ(s)ds, 0 ≤ t ≤ T.

Then Θc and Θs are elements of C∗
0 [0, T ], and for each τ ∈ [0, T ],

(γτ , A
w
Θc
x)∼ =

∫ τ

0

cos θ(s)dx(s) = ZΘc
(x, τ)
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and

(γτ , A
w
Θs
x)∼ =

∫ τ

0

sin θ(s)dx(s) = ZΘs
(x, τ),

where Aw
Θc

and Aw
Θs

are admixable operators given by equation (4.2) on Wiener

space C0[0, T ]. Furthermore,

(Θc, A
w
γτ
x)∼ = (γτ , A

w
Θc
x)∼

and

(Θs, A
w
γτ
x)∼ = (γτ , A

w
Θs
x)∼

are elements of C0[0, T ] as a function of τ .

Remark 4.2. Let M be the σ-algebra of all mw-measurable subsets of C0[0, T ].
Then (C0[0, T ],M,mw) is a complete measure space. It is well known that
M coincides with σ(B(C0[0, T ])), the completion of B(C0[0, T ]). Thus, for any
M-measurable functional F , there exists a B(C0[0, T ])-measurable functional
F ∗ such that F (x) = F ∗(x) for mw-a.e. x in (C0[0, T ],B(C0[0, T ])) (see [6,
Proposition 2.2.5]).

Proof of Theorem 1.1. Let n be any positive integer, and let 0 = τ0 < τ1 <
· · · < τn ≤ T be any partition of [0, T ]. In view of Remark 4.2 and the proofs
which are given in Sections 2–6 in [1], it will suffice to show that equation (1.2)
holds for any tame function F of the form

(4.6)
F(x, y) = f

(
x(τ1), x(τ2)− x(τ1), . . . , x(τn)− x(τn−1);

y(τ1), y(τ2)− y(τ1), . . . , y(τn)− y(τn−1)
)
,

where f : R2n → C is a Borel measurable function and is of class L1(R
2n).

Let ⊙ be defined by (4.1) between C′
0[0, T ] and C∗

0 [0, T ]. Let Θc and Θs

be given by (4.4) and (4.5), respectively, and let Aw
Θc

and Aw
Θs

be admixable
operators corresponding to Θc and Θs. Also for each j ∈ {1, . . . , n}, let

hj(t) =

∫ t

0

χ[τj−1,τj ](s)ds

on [0, T ]. Then H = {h1, . . . , hn} is an orthogonal set in C′
0[0, T ] and the

functional F given by (4.6) can be rewritten as

(4.7)
F(x, y) = f

(
(h1, x)

∼, . . . , (hn, x)
∼; (h1, y)

∼, . . . , (hn, y)
∼
)

≡ f
(
(~h, x)∼; (~h, y)∼

)
.

Clearly, H⊙Θc = {h1⊙Θc, . . . , hn⊙Θc} and H⊙Θs = {h1⊙Θs, . . . , hn⊙Θs}
are orthogonal sets in C′

0[0, T ]. Moreover, for each j ∈ {1, . . . , n},

(4.8)

(hj , A
w
Θc
w)∼ = (hj ⊙Θc, w)

∼ =

∫ τj

τj−1

cos θ(s)dw(s)

=

∫ τj

0

cos θ(s)dw(s) −

∫ τj−1

0

cos θ(s)dw(s)
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for mw-a.e. w ∈ C0[0, T ], and

(4.9)

(hj , A
w
Θs
z)∼ = (hj ⊙Θs, z)

∼ =

∫ τj

τj−1

sin θ(s)dz(s)

=

∫ τj

0

sin θ(s)dz(s) −

∫ τj−1

0

sin θ(s)dz(s)

for mw-a.e. z ∈ C0[0, T ]. Thus, using equation (1.1) together with (4.8) and
(4.9), and the third expression of equation (4.7), the left side of (1.2) with F

given by (4.6) is rewritten as

∫

C2

0
[0,T ]

F(Tθ(w, z))d(mw ×mw)(w, z)

=

∫

C2

0
[0,T ]

f
(
(~h,Aw

Θc
w)∼ − (~h,Aw

Θs
z)∼;

(~h,Aw
Θs
w)∼ + (~h,Aw

Θc
z)∼

)
d(mw ×mw)(w, z)

=

∫

C2

0
[0,T ]

f
(
(~h,Aw

Θc
w −Aw

Θs
z)∼; (~h,Aw

Θs
w +Aw

Θc
z)∼

)
d(mw ×mw)(w, z)

=

∫

C2

0
[0,T ]

f
(
XH(Aw

Θc
w −Aw

Θs
z);XH(Aw

Θs
w +Aw

Θc
z)
)
d(mw ×mw)(w, z)

=

∫

C2

0
[0,T ]

F
(
Aw

Θc
w −Aw

Θs
z, Aw

Θs
w +Aw

Θc
z
)
d(mw ×mw)(w, z),

where XH is given by equation (2.4) with V replaced with H. Thus, using (3.2)
with Ag1 and Ag2 replaced with Aw

Θc
and Aw

Θs
respectively, and equation (4.2),

we obtain

(4.10)

∫

C2

0
[0,T ]

F(Tθ(w, z))d(mw ×mw)(w, z)

=

∫

C2

0
[0,T ]

F
(
Aw

s(Θc,Θs)
x,Aw

s(Θc,Θs)
y
)
d(mw ×mw)(x, y)

=

∫

C2

0
[0,T ]

F
(
Zs(Θc,Θs)(x, ·),Zs(Θc ,Θs)(y, ·)

)
d(mw ×mw)(x, y).

We note that by equations (2.3), (2.2) and (4.1),

s⊙2(Θc,Θs)(t) ≡ Θ⊙2
c (t) + Θ⊙2

s (t)

=

∫ t

0

cos2 θ(s)ds+

∫ t

0

sin2 θ(s)ds =

∫ t

0

ds.

But in view of condition (a5) of Definition 2.1 and (4.1), we see that either
s(Θc,Θs)(t) = t or s(Θc,Θs)(t) = −t, i.e., either Zs(Θc,Θs)(x, ·) = x(·) or
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Zs(Θc,Θs)(x, ·) = −x(·). But we know that for all B(C0[0, T ])-measurable func-
tional F , ∫

C0[0,T ]

F (x)dmw(x) =

∫

C0[0,T ]

F (−x)dmw(x).

Hence, the last expression in equation (4.10) above can be rewritten as
∫

C2

0
[0,T ]

F(x, y)d(mw ×mw)(x, y).

Thus we obtain the desired result. �

5. g
⊙-admix-Wiener transform

In this section, we define a transform on abstract Wiener space B and in-
vestigate its algebraic properties. Let (B,H, ν) be an abstract Wiener space,
and let F : B → C be a Wiener measurable functional. For g ∈ B∗, we define
the g⊙-admix-Wiener transform, Tw

g (F ) of F , by the formula

Tw
g (F )(y) =

∫

B

F (y +Agx)dν(x),

if it exists, where Ag is the g⊙-admixable operator.
We note that if Tw

g (F1) exists and if F1 = F2 for ν-a.e., then Tw
g (F2) exists

and Tw
g (F2) = Tw

g (F1) for ν-a.e..

Given an orthogonal set H in H , let K
(2)
H (B) be the class of all functionals

F : B → C given by

(5.1) F (x) = f((h1, x)
∼, . . . , (hn, x)

∼) ≡ f
(
XH(x)

)

for ν-a.e. x ∈ B, where f : Rn → C is Borel measurable and is of class L2(R
n).

Throughout this section, for convenience, we use the following notations: for
a finite sequence Gm = (g1, . . . , gm) in H , let

(5.2) s(Gm) ≡ s(g1, . . . , gm) = ⊙

√√√√
m∑

j=1

g⊙2
j .

Also, for H = {h1, . . . , hn} ⊂ H and g ∈ B∗ − {0}, let
(5.3)
ψ
(
H⊙ g;~r

)
≡ ψ

(
H⊙ g; r1, . . . , rn

)

=

( n∏

j=1

2π|hj ⊙ g|2
)−1/2 ∫

Rn

f(~u) exp

{
−

n∑

j=1

(uj − rj)
2

|hj ⊙ g|2

}
d~u.

For all g ∈ O(H), ψ(H⊙ g;~r) is in L2(R
n), as a function of ~r, by [9, Lemma

1.1]. From this fact, we obtain the following proposition.
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Proposition 5.1. Let F ∈ K
(2)
H (B) be given by equation (5.1). Then for all

nonzero g ∈ O(H), the g⊙-admix-Wiener transform, Tw
g (F ) exists, belongs to

K
(2)
H (B) and is given by the formula

Tw
g (F )(y) = ψ

(
H⊙ g;XH(y)

)

for ν-a.e. y ∈ B, where ψ is given by (5.3).

We now present a theorem that will play a key role in this section.

Theorem 5.2. Let F be a complex-valued ν-integrable functional on B given

by equation (5.1), and let g1 and g2 be nonzero elements in O(H). Then

(5.4)

∫

B2

F
(
Ag1w +Ag2z

)
d(ν × ν)(w, z) =

∫

B

F
(
As(g1,g2)x

)
dν(x),

where Ag denotes the g⊙-admixable operator.

Proof. Let P : B2 → B be the projection map given by P (w, z) = z. Then
equation (5.4) follows from equation (3.2) with F replaced with F ◦ P . �

The following theorem follows immediately from Proposition 5.1 and Theo-
rem 5.2.

Proposition 5.3. Let F ∈ K
(2)
H (B) be given by equation (5.1). Then for any

nonzero elements g1 and g2 in O(H),

(5.5) (Tw
g2(T

w
g1(F ))(y) = Tw

s(g1,g2)
(F )(y)

for ν-a.e. y ∈ B.

Let Tw
0 denote the identity transform; i.e., Tw

0 (F ) = F , and let

T[K
(2)
H (B);O(H)] = {Tw

g : g ∈ O(H)}

be the class of admix-Wiener transforms acting on K
(2)
H (B).

By Propositions 5.1 and 5.3, we see that for all g1, g2 ∈ O(H) and all F ∈

K
(2)
H (B),

(Tw
g2 ◦ T

w
g1)(F ) ≡ (Tw

g2(T
w
g1(F )) = Tw

s(g1,g2)
(F )

is in K
(2)
H (B). Because for all g1, g2, g3 ∈ O(H),

s(s(g3, g2), g1) = s(g3, g2, g1) = s(g3, s(g2, g1)),

we see that the composition ◦ of admix-Wiener transforms is associative. Also,
because s(g1, g2) = s(g2, g1), we see that (Tw

g2 ◦ T
w
g1)(F ) = (Tw

g1 ◦ T
w
g2)(F ), and

clearly (Tw
0 ◦ Tw

g1)(F ) = Tw
g1(F ) for any g1, g2 ∈ O(H) and every F ∈ K

(2)(B).
Thus, we have the following proposition.

Proposition 5.4. The space (T[K
(2)
H (B);O(H)], ◦) is a commutative monoid.

Furthermore, the monoid T[K
(2)
H (B);O(H)] acts on the space K

(2)
H (B) in the

sense that (Tw
g , F ) 7→ Tw

g (F ).
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Next, let Sf(O(H)) be the set of all finite sequences in O(H), and let

T[K
(2)
H (B);Sf(O(H))] = {Tw

s(Gm) : Gm ∈ Sf(O(H))}.

Using the fact that for any Gm ∈ Sf(O(H)), s(Gm) ∈ O(H) ⊂ Sf(O(H)), we

know that the classes T[K
(2)
H (B);O(H)] and T[K

(2)
H (B);Sf(O(H))] coincide as

sets. However, we will consider another operation, ⊛, on T[K
(2)
H (B);Sf(O(H))],

defined as follows: for any Gm1
= (g11 , . . . , g

1
m1

) and Gm2
= (g21 , . . . , g

2
m2

) in
Sf(O(H)), let

(5.6)
Gm1

∧ Gm2
≡ (g11 , . . . , g

1
m1

) ∧ (g21 , . . . , g
2
m2

)

= (g11 , . . . , g
1
m1
, g21 , . . . , g

2
m2

),

and for Tw
s(Gm1

) and T
w
s(Gm2

) in T[K
(2)
H (B);Sf(O(H))], let

(5.7) Tw
s(Gm1

) ⊛ Tw
s(Gm2

) = Tw
s(Gm1

∧Gm2
).

Because
s(s(Gm1

), s(Gm2
)) = ⊙

√
s(Gm1

)⊙2 + s(Gm2
)⊙2

= ⊙

√√√√
m1∑

j=1

g1j
⊙2

+

m2∑

j=1

g2j
⊙2

= s(Gm1
∧ Gm2

),

the operation ⊛ given by (5.7) is well defined in view of equation (5.5).

Proposition 5.5. The space (T[K
(2)
H (B);Sf(O(H))],⊛) is a commutative

monoid. Furthermore, the monoid T[K
(2)
H (B);Sf(O(H))] acts on the space

K
(2)
H (B) in the sense that (Tw

s(G), F ) 7→ Tw
s(G)(F ).

Remark 5.6. The operation ⊛ is a semigroup action of T[K
(2)
H (B);Sf(O(H))],

i.e., T[K
(2)
H (B);Sf(O(H))] is a transform semigroup.

In fact, the sequence space Sf(O(H)) is a semigroup under the operation ∧,
given by (5.6) above. Thus we see clearly that for any (g1, . . . , gm) ∈ Sf(O(H))
and any permutation π of {1, . . . ,m},

(5.8) s(g1, . . . , gm) = s(gπ(1), . . . , gπ(m)).

Define an equivalence relation
s
∼ on Sf(O(H)) as follows: for Gm1

and Gm2
in

Sf(O(H)),

Gm1

s
∼ Gm2

⇐⇒ s(Gm1
) = s(Gm2

).

Also, let

S̃f ≡ Sf(O(H))/
s
∼= {[Gm]s : Gm ∈ Sf(O(H))}

be the quotient set of Sf(O(H)) by
s
∼. Then from equations (5.2) and (5.8),

we see that S̃f is the quotient semigroup under the operation ∧, defined by

(5.9) [Gm1
]s ∧ [Gm2

]s = [Gm1
∧ Gm2

]s.
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Define a relation on T[K
(2)
H (B);Sf(O(H))] as follows: for Tw

s(Gm1
) and T

w
s(Gm2

)

in T[K
(2)
H (B);Sf(O(H))],

Tw
s(Gm1

)
t
∼ Tw

s(Gm2
) ⇐⇒ Gm1

s
∼ Gm2

.

From equations (5.5), (5.2), and (5.8), we see that for every (g1, . . . , gm) ∈
Sf(O(H)) and any permutation π of {1, . . . ,m},

Tw
s(g1,...,gm)(F ) = Tw

s(gπ(1),...,gπ(m))
(F ).

Thus, the relation
t
∼ is a well-defined equivalence relation, and so we can obtain

the quotient semigroup

T̃ ≡ T[K
(2)
H (B);Sf(O(H))]/

t
∼

= {[Tw
s(Gm)]t : T

w
s(Gm) ∈ T[K

(2)
H (B);Sf(O(H))]}

under the operation ⊛, given by

(5.10) [Tw
s(Gm1

)]t ⊛ [Tw
s(Gm2

)]t = [Tw
s(Gm1

∧Gm2
)]t.

Theorem 5.7. Define a map Ξ : ( T̃ ,⊛) → ( S̃f ,∧) by

(5.11) Ξ([Tw
s(Gm)]t) = [Gm]s.

Then Ξ is a semigroup isomorphism.

Proof. It follows from (5.9) and (5.10) that

Ξ([Tw
s(Gm1

)]t ⊛ [Tw
s(Gm2

)]t) = Ξ([Tw
s(Gm1

∧Gm2
)]t)

= [Gm1
∧ Gm2

]s

= [Gm1
]s ∧ [Gm2

]s

= Ξ([Tw
s(Gm1

)]t)⊛ Ξ([Tw
s(Gm2

)]t).

Clearly, the map given by equation (5.11) is bijective. �
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