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HIGHER ORDER ASYMPTOTIC BEHAVIOR OF CERTAIN

KÄHLER METRICS AND UNIFORMIZATION FOR

STRONGLY PSEUDOCONVEX DOMAINS

Jae-Cheon Joo and Aeryeong Seo

Abstract. We provide some relations between CR invariants of bound-
aries of strongly pseudoconvex domains and higher order asymptotic be-
havior of certain complete Kähler metrics of given domains. As a con-
sequence, we prove a rigidity theorem of strongly pseudoconvex domains
by asymptotic curvature behavior of metrics.

1. Introduction

The characterization of holomorphic covering spaces of high dimensional
complex manifolds is complicated as against the Riemann uniformization theo-
rem for Riemann surfaces. In differential geometric point of view, it is believed
that the curvature behaviors of certain Kähler metrics would restrict the com-
plex structure of manifolds. For instance, Siu-Yau have proved in [17] the
Frankel conjecture that a compact Kähler manifold with positive bisectional
curvature is biholomorphic to the complex projective space. See also [10] for its
generalization. They also have proved that a simply connected complete Kähler
manifold is biholomorphic to the complex Euclidean space if the sectional cur-
vature is nonpositive and asymptotically vanishes faster than quadratic order.
See [16]. Siu also proved in [15] that the complex structure of a compact Kähler
manifold with strongly negative curvature tensor is determined by its homotopy
type. This is called Siu’s strong rigidity theorem.

The aim of this paper is to find a curvature condition of some noncompact
manifolds which are covered by the unit ball. As a generalization of Chern-Ji’s
theorem ([2]), Nemirovskii-Shaffikov proved in [11, 12] that a strongly pseu-
doconvex domain Ω with C∞-smooth boundary is covered by the unit ball if
every boundary point is spherical in the sense that all the CR invariants vanish

Received March 25, 2014.
2010 Mathematics Subject Classification. 32V15, 53B35.
Key words and phrases. Bergman metric, Graham-Lee connection, CR invariants.
The second author was supported by National Researcher Program of the National

Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning
(No.2014028806).

c©2015 Korean Mathematical Society

113



114 JAE-CHEON JOO AND AERYEONG SEO

identically on ∂Ω (cf. [3]). Therefore, it is needed to find relations between
boundary CR invariants and curvature behavior of interior metrics if we want
to characterize the curvature condition under that a strongly pseudoconvex
domain is covered by the unit ball. Let Ω be a bounded strongly pseudoconvex
domain in C

n+1 with C∞-smooth boundary. Suppose ϕ is a Ck-smooth defin-
ing function of Ω for some k ≥ 4 and − log(−ϕ) is strongly plurisubharmonic
so that

gij̄ = −
∂2

∂zi∂zj̄
log(−ϕ)

defines a complete Kähler metric on Ω. For instance, if ϕ(z) = −K(z, z)−
1

n+1

whereK is the Bergman kernel on Ω, (gij̄) is a constant multiple of the Bergman
metric and if ϕ is the solution of the complex Monge-Ampére equation

{
J(ϕ) = 1, on Ω
ϕ ≡ 0, on ∂Ω

where

J(ϕ) = (−1)n

(
ϕ ∂ϕ

∂zj̄
∂ϕ
∂zk

∂2ϕ
∂zk∂zj̄

)
,

(gij̄) is the Kähler-Einstein metric on Ω.
In 1978, Klembeck ([8]) proved that the holomorphic sectional curvature of

the Bergman metric tends to a negative constant as the point of evaluation
tending to the boundary by means of the asymptotic expansion formula for
the Bergman kernel given by Fefferman ([4]). Klembeck’s theorem bas been
generalized by Kim and Yu in C2-smooth boundary case ([7]) and also reproved
by Barletta in [1]. The main theorem of this paper is as follows.

Theorem 1.1. Let Ω be a bounded strongly pseudoconvex domain in C
n+1 with

C∞-smooth boundary and ϕ be a Ck-smooth defining function of Ω for some

k ≥ 4 such that

gij̄ = −
∂2

∂zi∂zj̄
log(−ϕ)

is a complete Kähler metric on Ω. For p ∈ Ω, W ∈ C
n+1/{0}, denote Hp(W )

the holomorphic sectional curvature of (gij̄) at p in direction of W . Then

(1) For n ≥ 2, if

Hp(W ) = −2 +O
(
ϕ2
)
,

then ∂Ω is spherical at every point.

(2) For n = 1, if k ≥ 5 and if

Hp(W ) = −2 +O
(
ϕ3
)
,

then ∂Ω is spherical at every point.
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By the Nemirovskii-Shaffikov theorem, the domain Ω is holomorphically cov-
ered by the unit ball if either (2) or (3) in Theorem 1.1 is satisfied. In this
theorem, we do not assume the C∞-smoothness of the defining function ϕ,
since the Bergman metric and the Kähler-Einstein metric that are most impor-
tant two examples, are not defined by C∞-smooth functions even though the
boundary is C∞-smooth.

Throughout this paper, the Greek indices α, β, γ, . . . run from 1 to n and
the Roman indices i, j, k, . . . run from 0 to n. Denote by O(ϕk) a function that
O(ϕk)
ϕk is bounded as ϕ→ 0. We also make use of the summation convention.

2. The Graham-Lee connection

Let Ω be a strongly pseudoconvex domain in C
n+1 with C∞-smooth bound-

ary. Let ϕ be a Ck-smooth defining function of Ω = {z ∈ C
n+1 : ϕ(z) < 0}

for some k ≥ 4. Let U = {z ∈ Ω : −ε̃ < ϕ ≤ 0} for sufficiently small ε̃ > 0
and M ε = {ϕ = −ε} for ε satisfying ε̃ > ε ≥ 0. Let H be an complex vector
bundle on U with Hp = T 1,0

C
n+1 ∩CTpM

ε for p ∈M ε. Let θ = Im ∂ϕ. Then
the restriction of θ on M ε defines a pseudohermitian structure on M ε. Let T
be the characteristic vector field for (M ε, θ). That is, T is the tangent vector
for (M ε, θ) satisfying θ(T ) = 1 and T ydθ|H = 0. Let N = −JT where J is the
standard almost complex structure on C

n and

ξ =
1

2
(N − iT ).

Note that ∂ϕ(ξ) = 1 and dθ = i∂∂ϕ. Let {Wα} be a local frame of H. Let
W0 = ξ and θ0 = ∂ϕ. Then {W0,Wα} is a local frame for T 1,0U . Let {θ0, θα}
be its coframe. Then there exists a positive definite hermitian symmetric matrix
(hαβ̄) such that

(2.1) dθ0 = −∂∂ϕ = −hαβ̄θ
α ∧ θβ̄ − rθ0 ∧ θ0̄,

where r = 2∂∂ϕ(ξ, ξ̄). Since dϕ = 0 for each M ε, we have on M ε

dθ = ihαβ̄θ
α ∧ θβ̄ .

Then by the pseudohermitian structure in [18], there exist 1-forms (ωβ
α) and

τα = Aα
β̄θ

β̄ on M ε such that

(2.2) dθα = θβ ∧ ωβ
α + θ ∧ τα,

(2.3) dhαβ̄ = ωαβ̄ + ωβ̄α, and Aαβ = Aβα,

where ωαβ̄ = ωα
γhγβ̄ and Aαβ = hαγ̄A

γ̄
β. We extend (ωβ

α) and τα to forms
on U by

ωβ
α(N) = 0, and τα(N) = 0.
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Theorem 2.1 (C. R. Graham and J. M. Lee [5]). There exist uniquely deter-

mined 1-forms (ϕβ
α) such that

ϕβ
α|Mε = ωβ

α, dhαβ̄ = ϕαβ̄ + ϕβ̄α

and

(2.4) dθα = θβ ∧ ϕβ
α − iAα

β̄θ
0 ∧ θβ̄ +

r

2
θ0 ∧ θα +

r

2
θ0̄ ∧ θα − (Wαr)θ0 ∧ θ0̄,

where Wα =Wβ̄ h
β̄α.

The Graham-Lee ambient connection ∇ is a complex linear connection de-
fined by

∇Wα = ϕα
β ⊗Wβ and ∇W0 = 0.

We may assume that {Wα} was chosen that hαβ̄ = δαβ̄ . We call such {ξ =
W0,W1, . . . ,Wn} an adapted frame for ϕ. The curvature form of the Graham-
Lee ambient connection is Θ α

β = dϕ α
β − ϕ γ

β ∧ ϕ α
γ .

Theorem 2.2 (C. R. Graham and J. M. Lee [5]). Let {θ0, θα} be the coframe

for an adapted frame. Then the curvature form of the Graham-Lee ambient

curvature tensor is given by

Θ α
β = R̃ β

α ργ̄ θ
ρ ∧ θγ̄ + iθα ∧ τβ − iτα ∧ θβ

+

(
iAαγ,β̄ − rαδ

β
γ −

1

2
rγδ

β
α

)
θγ ∧ θ0̄

−

(
iAβ̄γ̄,α + rβ̄δ

ᾱ
γ̄ +

1

2
rγ̄δ

β
α

)
θ0 ∧ θγ̄

+

(
rαδ

β
γ +

1

2
rγδ

β
α

)
θ0 ∧ θγ −

(
rβ̄δ

ᾱ
γ̄ +

1

2
rγ̄δ

β
α

)
θ0̄ ∧ θγ̄

−
1

2

(
rα

β + rβα + 2AαγAγ̄β̄

)
θ0 ∧ θ0̄,

where R̃ β
α ργ̄ is the pseudohermitian curvature tensor and Aαβ,γ̄ is the coeffi-

cient of the pseudohermitian covariant derivative of A on each M ε.

Here and in the sequel, for a k-formB = Bi1i2···ikθ
i1∧θi2∧· · ·∧θik , we denote

the Graham-Lee covariant derivatives of the coefficients by adding indices after
comma.

3. Relations between the Graham-Lee ambient connection and the

Levi-Civita connection

Let Ω = {z ∈ C
n+1 : ϕ(z) < 0} be a strongly pseudoconvex domain in

C
n+1, n ≥ 1 with a defining function ϕ such that − log(−ϕ) is strictly plurisub-

harmonic on a neighborhood of Ω. Let g be a complete Kähler metric on Ω
with the Kähler form

(3.1) ω = −∂∂ log(−ϕ).
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Let {W0,Wα} be an adapted frame for ϕ and {θ0, θα} be its dual coframe.

Let (ψk
j) be the connection 1-form of the Levi-Civita connection of g which is

uniquely determined by

(3.2) dθj = θk ∧ ψk
j and dgjk̄ = ψjk̄ + ψk̄j ,

where ψjk̄ = ψ l
j glk̄.

Proposition 3.1 (cf. N. Seshadri [14], E. Barletta [1]). With respect to an

adapted frame {W0,Wα} for ϕ, g is determined by equations

(3.3) g00̄ =
1− rϕ

ϕ2
, g0β̄ = 0, and gαβ̄ = −

δαβ̄
ϕ
.

Moreover its Levi-Civita connection form (ψk
j) is computed by the equations

(3.4) ψ 0
0 = −r θ0̄ +

(
r −

1

1− rϕ

(
2

ϕ
− r + r0ϕ

))
θ0 −

rαϕ

1− rϕ
θα,

(3.5) ψα
0 = −θᾱ −

rαϕ

1− rϕ
θ0 + i

ϕ

1− rϕ
τ ᾱ,

ψ0
α = −iτα − rᾱθ

0̄ −
1− rϕ

ϕ
θα,(3.6)

and

ψβ
α = ϕβ

α −
r

2
δαβ θ

0̄ +

(
r

2
−

1

ϕ

)
δαβ θ

0.(3.7)

Remark 3.2. By Proposition3.1, {e0, . . . , en} where e0 = ϕ
√
1−rϕ

X0 and eα =
√
−ϕXα form a unitary frame on U with respect to the metric g.

4. Asymptotic behavior of the holomorphic sectional curvature for

n > 1

Let Ω j
i and R j

i kl̄
be the Kähler curvature form and the curvature coefficients

of the metric g with respect to the adapted frame {W0, . . . ,Wn} given by the
equation (3.3), that is,

Ω j
i = dψ j

i − ψ l
i ∧ ψ j

l = R j

i kl̄
θk ∧ θl̄.

Let Q j

i kl̄
be the Kähler curvature coefficients of g with respect to the unitary

frame {e0, . . . , en} given in Remark 3.2. Similar to the Chern pseudoconformal
curvature tensor, define

P β
α γσ̄ := Q β

α γσ̄ −
1

n+ 2

(
Q β

α δγσ̄ +Q β
γ δασ̄ + δ β

α Qγσ̄ + δ β
γ Qασ̄

)

+
Q

(n+ 1)(n+ 2)

(
δ β
α δγσ̄ + δ β

γ δασ̄
)
,(4.1)

where Q β
α = Q β

α jj̄
is the Ricci tensor and Q = Q j

j is the scalar curvature.
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In [8], it is proved that the holomorphic sectional curvature of g at a p ∈ Ω
converges to a constant −2 as p tends to the boundary. More generally, we can
prove the following:

Proposition 4.1. Let Ω be a bounded strongly pseudoconvex domain in C
n+1

with C∞-smooth boundary. Suppose that n > 1. Then

P β
α γσ̄ = −ϕC β

αγ σ̄ +O
(
ϕ2
)
,

where C β
αγ σ̄ is the Chern pseudoconformal curvature tensor of ∂Ω for every

C4-smooth defining function ϕ of Ω such that − log(−ϕ) is strictly plurisub-

harmonic on a one-sided neighborhood U of ∂Ω. Hence, in particular, ∂Ω is

spherical if and only if P β
α γσ̄ = O(ϕ2).

Proof. By Theorem 2.2 and Proposition 3.1, one see that

R β
α γσ̄ = 2Ω β

α (Wγ ,Wσ̄)

= R̃ β
α γσ̄ +

1− rϕ

ϕ

(
δβαδγσ̄ + δβγ δασ̄

)
−

ϕ

1− rϕ
AαγA

β
σ̄.

Therefore,

Q β
α γσ̄ = −ϕR β

α γσ̄

= −(1− rϕ)
(
δβαδγσ̄ + δβγ δασ̄

)
− ϕ R̃ β

α γσ̄ +
ϕ2Aβ

σ̄Aαγ

1− rϕ
.(4.2)

Similarly, we also have

Q β
α 00̄

=
ϕ2

1− rϕ
R β

α 00̄

= −
δβα

1− rϕ
+

rϕ

1− rϕ
δβα −

ϕ2

1− rϕ
V β
α

= −δ β
α +O

(
ϕ2
)
,(4.3)

where

V β
α =

(r0
2

+
r0̄
2

+ r2
)
δβα +

rαrβ̄
1− rϕ

+
1

2

(
r β
α + rβα + 2

∑

γ

AαγAγ̄β̄

)
.

Contracting indices, we see that

Q β
α = Q β

α γγ̄ +Q β
α 00̄

= −(n+ 2) δβα + ϕ
(
(n+ 1) r δβα − R̃ β

α

)
+O

(
ϕ2
)
.(4.4)

Again, by Theorem 2.2 and Proposition 3.1

(4.5) Q 0
0 αᾱ = −ϕR 0

0 αᾱ = −1 +O
(
ϕ2
)
,

Q 0
0 00̄ =

ϕ2

1− rϕ
R 0

0 00̄ = −2 +O
(
ϕ3
)
.
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Therefore

(4.6) Q 0
0 = Q 0

0 αᾱ +Q 0
0 00̄ = −2− n+O

(
ϕ2
)
.

Hence

(4.7) Q = Q α
α +Q 0

0 = −(n+ 2)(n+ 1) + ϕ
(
n(n+ 1)r − R̃

)
+O

(
ϕ2
)
.

By substituting (4.2), (4.4) and (4.7) in (4.1) , we obtain

P β
α γσ̄ = − ϕR̃ β

α γσ̄ +
ϕ

n+ 2

(
R̃ β

α δγσ̄ + R̃ β
γ δασ̄ + δ β

α R̃γσ̄ + δ β
γ R̃ασ̄

)

−
ϕR̃

(n+ 1)(n+ 2)

(
δ β
α δγσ̄ + δ β

γ δασ̄
)
+O

(
ϕ2
)

= − ϕC β
αγ σ̄ +O

(
ϕ2
)
,

where C β
αγ σ̄ is the Chern pseudoconformal curvature tensor of ∂Ω. This implies

the proposition. �

Remark 4.2. Using similar method, for a nonvanishing section of H, Z, one
can find the expression

(4.8) H(Z) = −2− ϕ(H̃(Z)− 2r) +O(ϕ2),

where H̃(Z) is the pseudohermitian sectional curvature in direction of Z and

(4.9) H(ξ) = −2 +O(ϕ3).

Proof of Theorem 1.1(1). Since H(Z) = −2 + O
(
ϕ2
)
,

Q β
α γσ̄ =

1

2

(
δ β
α δγσ̄ + δασ̄δ

β
γ

)
+O

(
ϕ2
)
.

By (4.3) and (4.10),

(4.10) Q β
α =

n− 1

2
δ β
α +O

(
ϕ2
)
.

By (4.6) and (4.10),

(4.11) Q =
1

2
(n+ 1)(n− 4) +O

(
ϕ2
)
.

Hence P β
α γσ̄ = O

(
ϕ2
)
and therefore by Proposition 4.1, ∂Ω is spherical. �

Corollary 4.3. Let Ω be a bounded strongly pseudoconvex domain with C∞-

smooth boundary in C
n+1. Let g be the Bergman metric on Ω and ρ be a

C∞-smooth defining function of Ω. If n > 1 and

HB(W ) = −
4

n+ 2
+O

(
ρ2
)

for every nonzero complex vector W where HB(W ) denotes the holomorphic

sectional curvature of the Bergman metric in direction W , then Ω is holomor-

phically covered by the unit ball in C
n+1.
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Proof. Let

ϕ(z) = −K(z, z)−1/(n+2),

where K is the Bergman kernel of Ω. Then by Fefferman’s asymptotic expan-
sion formula for the Bergman kernel, ϕ is of Cn+2,s-smooth defining function
on Ω for every 0 < s < 1. By Theorem 1.1 (1), we get the conclusion. �

5. Asymptotic behavior of the holomorphic sectional curvature for

n = 1

Let us consider the case n = 1. By Theorem 2.2, the curvature form of the
Graham-Lee ambient connection for n = 1 is given by

dϕ 1
1 = R̃θ1 ∧ θ1̄ +

(
iA11,1̄ −

3

2
r1

)
θ1 ∧ θ0̄ −

(
iA1̄1̄,1 +

3

2
r1̄

)
θ0 ∧ θ1̄

+
3

2
r1θ

0 ∧ θ1 −
3

2
r1̄θ

0̄ ∧ θ1̄ + (∆br − |A11|
2)θ0 ∧ θ0̄,(5.1)

where R̃ is the pseudohermitian curvature and ∆b is the sublaplacian of the
pseudohermitian structure. The asymptotic behavior of the curvature tensor
of the Levi-Civita connection with respect to the adapted frame is given by the
following:

Proposition 5.1. With respect to an adapted frame {W0,W1} for ϕ, denote

R j

i kl̄
and R̃ j

i kl̄
be the curvature tensor of the Levi-Civita connection and the

Graham-Lee ambient connection respectively. Then the followings hold:

(5.2) R 1
1 11̄ =

2

ϕ
+
(
H̃(W1)− 2r

)
+O(ϕ),

where H̃(W1) is the pseudohermitian sectional curvature in direction of W1,

(5.3) R 1
1 01̄ = R 1

0 11̄ = R 1
1 10̄

= −
(
iA1̄1̄,1 + 2r1̄

)
+O(ϕ),

R 1
1 00̄ = R 1

1 00̄ = −
1

ϕ2
+
r

ϕ
+

(
∆br − |A11|

2 − r2 −
r0 + r0̄

2

)
+O(ϕ),

R 0
1 01̄ = R 0

0 11̄ =
1

ϕ
+O(ϕ), R 0

1 11̄ = O(ϕ),

R 0
0 00̄ = −

2

ϕ2
+

2r

ϕ
+ (2|r1|

2 +W0̄r0 + 3rr0 + 2rr0̄ + 3r3)ϕ+O(ϕ2),

R 0
0 01̄ = R 0

0 10̄
= R 0

1 00̄
= (W1̄r0 + 2rr1̄ + 2ir1A1̄1̄)ϕ+O(ϕ2),

(5.4) R 1
0 01̄ = −i

(
A1̄1̄,0 + 2rA1̄1̄

)
− iA1̄1̄(r0 + r2)ϕ+O(ϕ2),

R 0
1 10̄ = i(A1̄1̄,0 + 2rA1̄1̄)ϕ+O(ϕ2), R 1

0 00̄ = O(ϕ2).
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Proof. We verify only (5.3) and (5.4) in this proof. The other asymptotic
formulas can be also obtained in the same way.

By (2.1),

R 1
1 01̄ = 2(dψ 1

1 − ψ l
1 ∧ ψ 1

l )(W0,W1̄)

= 2dϕ 1
1 (W0,W1̄)−

1

2
r1̄ − 2ψ l

1 ∧ ψ 1
l (W0,W1̄).

By (5.1) and

ψ 0
1 (W0) = −

r1ϕ

1− rϕ
, ψ 1

0 (W0) = 0,

we get

R 1
1 01̄ = −iA1̄1̄,1 − 2r1̄ − i

r1ϕA1̄1̄

1− rϕ
.

With this and

R 1
0 11̄ = g11̄R01̄11̄ = g11̄R11̄01̄ = R 1

1 01̄,

R 1
1 10̄ = g11̄R11̄10̄ = g11̄R11̄01̄ = R 1

0 11̄
,

we get (5.3). Since

2dψ 1
0 (W0,W1̄) = 2d

(
−iA1̄1̄θ

1̄ − r1̄θ
0̄ −

1− rϕ

ϕ
θ1
)
(W0,W1̄)

= −iA1̄1̄,0 −
r

2
iA1̄1̄ +

1− rϕ

ϕ
iA1̄1̄

and

ψ 0
0 (W0) = P, ψ 1

0 (W1̄) = −iA1̄1̄, ψ
1

0 (W1̄) = −iA1̄1̄, ψ
1

1 (W0) =
r

2
−

1

ϕ
,

where

P =

(
r −

1

1− rϕ

(
2

ϕ
− r + r0ϕ

))

= −
2

ϕ
− (r0 + r2)ϕ+O(ϕ2),

we can get

R 1
0 01̄ = 2

(
dψ0

1 − ψ l
0 ∧ ψ 1

l

)
(W0,W1̄)

= −iA1̄1̄,0 −
r

2
iA1̄1̄ +

1− rϕ

ϕ
iA1̄1̄ + iA1̄1̄P − iA1̄1̄

(
r

2
−

1

ϕ

)

= −i(A1̄1̄,0 + 2rA1̄1̄)− iA1̄1̄(r0 + r2)ϕ+ O(ϕ2).
�

In case n = 1, the unique CR invariant Q1̄1̄ is given as the following lemma

in terms of the torsion coefficient A1̄1̄ and pseudohermitian curvature R̃.
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Lemma 5.2 (cf. [3, 18]). Let M be a strongly pseudoconvex CR manifold of

dimension 3. Then the pseudoconformal invariant Q1̄1̄ given in [3] is

Q1̄1̄ = A1̄1̄,T −
2i

3
A1̄1̄,11̄ +

i

2
R̃A1̄1̄ −

1

6
R̃1̄1̄.

In particular, M is spherical if and only if Q1̄1̄ = 0 on M .

Although the formula in Lemma 5.2 is not given in [3, 18], we can get it
by comparing the algebraic relation between the pseudohermitian structure
equation in [18] and the pseudoconformal structure equation in [3], as Webster
computed the pseudoconformal curvature tensor in terms of the pseudohermi-
tian one in [18].

Now we are ready to prove (3) in Theorem 1.1:

Proposition 5.3. Suppose n = 1 and ϕ is at least C5-smooth. If

H(W ) = −2 +O(ϕ3)

for every nonvanishing section W of T 1,0Ω, then ∂Ω is spherical.

Proof. The assumption gives

H

(
ξ

‖ξ‖
+ µ

Z

‖Z‖

)
= −2 +O(ϕ3)

for every Z ∈ H and µ ∈ C. This implies that

R11̄01̄ = g
3
2

11̄
g

1
2

00̄
O(ϕ3), R01̄01̄ = g11̄g00̄O(ϕ

3).

So
R 1

1 01̄ = O(ϕ), R 1
0 01̄ = O(ϕ).

Then by (5.3),

(5.5) −iA1̄1̄,1 = 2r1̄,

and by (5.4),

(5.6) A1̄1̄,0 + 2rA1̄1̄ = 0

on M . Differentiating (5.5), we have

−iA1̄1̄,11̄ = 2r1̄1̄.

Since moreover, R̃ = 2r on M , we have

Q1̄1̄ = A1̄1̄,T + r1̄1̄ + irA1̄1̄.

On the other hand, differentiating (2.4) and extracting the coefficient of the

term θ0 ∧ θ0 ∧ θ1, we have

(5.7) A1̄1̄,0̄ + rA1̄1̄ + ir1̄1̄ = 0.

Extracting (5.7) from (5.6), we see

0 = iA1̄1̄,T − rA1̄1̄ + ir1̄1̄ = iQ1̄1̄

since W0̄ −W0 = iT . This yields the conclusion. �
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Corollary 5.4. Let Ω be a bounded strongly pseudoconvex domains with C∞-

smooth boundary in C
2 with C∞-smooth defining function ρ. Let g be the

Bergman metric on Ω. If

HB(W ) = −
4

3
+O(ρ3)

for every nonzero W ∈ TΩ, then Ω is holomorphically covered by the unit ball

in C
2.

Proof. As in Corollary 4.3, let K be the Bergman kernel on Ω and

(5.8) ϕ = −K−1
3 = −

ρ

(a+ bρ3 log ρ)
1
2

for some a, b ∈ C∞(Ω), a > 0 on ∂Ω by Fefferman’s asymptotic expansion
formula [4]. Then ϕ ∈ C∞(Ω) ∩ C3,s(Ω). Although ϕ is not C5-smooth on
Ω, we can still compute the CR invariant Q1̄1̄ with ϕ, since the Levi form of
ϕ is infinitely differentiable in vector fields tangent to ∂Ω by (5.8). So by the
Theorem 5.3, Ω is covered by the unit ball. �

Remark 5.5. (1) Note that (5.5) holds even in case H(Z) = −2 + O(ϕ2).

Differentiate (5.5) in direction of W1 and take the real part. Since R̃ = 2r, we
have

(5.9) ∆bR̃− ImA11,1̄1̄ = 0

on M . The left hand side of (5.9) is usually called the CR Q-curvature, which
is a constant multiple of the coefficient of the log singularity of the Szegö kernel
for the contact form θ. See [6].

(2) The converse of Theorem 1.1 is also true in the sense that if a bounded
strongly pseudoconvex domain Ω is covered by the unit ball, then there ex-
ists a defining function ϕ satisfying the hypotheses of Theorem 1.1. In fact,
since the Kähler-Einstein metric is preserved by holomorphic covering maps,
we see that the Kähler-Einstein metric of any ball-quotient has constant nega-
tive holomorphic sectional curvature. On the other hand, it is well-known that
the Bergman metric is not preserved by holomorphic covering maps. Qi-Keng
Lu proved that the bounded domain which has the complete Bergman metric
with constant holomorphic sectional curvature is biholomorphic to the unit ball
(see [9]). In this point of view, one may ask that if the holomorphic sectional
curvature of the Bergman metric of a bounded strongly pseudoconvex domain
tends to a negative constant up to some order k ≥ 3 (possibly, k = ∞), then in
fact, the domain is biholomorphic to the unit ball. This seems to be an open
question, which might depend on some global property of the Bergman metric.
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