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BROYDEN’S METHOD FOR OPERATORS WITH

REGULARLY CONTINUOUS DIVIDED DIFFERENCES

Anatoly M. Galperin

Abstract. We present a new convergence analysis of popular Broyden’s
method in the Banach/Hilbert space setting which is applicable to non-
smooth operators. Moreover, we do not assume a priori solvability of the
equation under consideration. Nevertheless, without these simplifying as-
sumptions our convergence theorem implies existence of a solution and
superlinear convergence of Broyden’s iterations. To demonstrate practi-
cal merits of Broyden’s method, we use it for numerical solution of three
nontrivial infinite-dimensional problems.

1. Introduction

Trying to overcome disadvantages of Newton’s method

(1.1) x+ := x− f ′(x)−1f(x)

for solving systems of nonlinear equations

(1.2) f(x) = 0, f : Rn ⊃ D → R
n,

C. Broyden proposed in [2] to replace the inverse Jacobian f ′(x)−1 in (1.1) by
some its approximation (an n× n matrix) A satisfying the equation

(1.3) A
(
f(x) − f(x−)

)
= x− x−,

where x− denotes the iteration preceding the current one x. Since this equation
does not define A uniquely, it determines a class of iterative methods that
Broyden refers to as quasi-Newton methods. Particular methods of this class
differ by the choice of A among solutions of (1.3). Broyden’s choice advocated
in [2] is

A+ := A−
Af(x+)

f(x)TATA
(
f(x+)− f(x)

) f(x)TATA.
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Broyden’s method has proved to be successful in practice for solving (1.2).
Being paraphrased for operator equations

(1.4) f(x) = 0, f : X ⊃ D → H,

where f acts from a subset D of a Banach space X into a Hilbert one H, it
becomes

(1.5) x+ := x−Af(x), A+ := A−
Af(x+)

〈A∗Af(x) , f(x+)− f(x)〉
〈A∗Af(x) , ·〉.

Here A∗ stands for the adjoint of A and 〈·, ·〉 is the inner product in H.
Broyden’s method has since been applied to infinite-dimensional problems
[13, 14, 15] under various simplifying assumptions. There are also conver-
gence analyses of the method in general Hilbert and Banach spaces [10, 21].
In all these studies, operators under discussion are assumed to be Lipschitz
smooth. Similar assumptions are made in [22]. Since the method does not
involve evaluation of derivatives of the operator, it can be used for solving
equations with nondifferentiable operators. In this case, the above mentioned
analyses are unapplicable. Another limiting postulate present (explicitly or im-
plicitly) in existing analyses of Broyden’s method is solvability of the equation
(1.4). This assumption is often difficult to verify a priori. So, it should be
dropped too. Moreover, the focus of the analysis is most often on conditions
that ensure superlinear convergence property of Broyden’s method, well known
from its analyses in finite-dimensional spaces and their extensions to Hilbert
ones [8, 16]. This property is proved also [20], when Lipschitz smoothness of
the operator is not assumed.

The purpose of the present paper is to offer a new analysis of Broyden’s
method in Banach/Hilbert space setting free of unnecessary assumptions re-
stricting applicability of other analyses available in literature. Our analysis is
based on Kantorovich’s majorization principle, which stems from Kantorovich’s
investigation of Newton’s method in Banach space setting [11, Ch. XVIII]. How-
ever, the analysis we are going to present here differs from the others not only
in methodology, but in several other aspects too:

- It is applicable to nonsmooth operators, since differentiability of f is not
assumed. Instead, we require that the selected divided difference operator
[x1, x2 | f ] of f be regularly continuous [5, 7].

- No assumption about the existence of solution is made. On the contrary,
our convergence condition, which involves only the starter (x0,A0), guarantees
its existence.

- We show that if the sequence (xn,An) generated by the method (1.5) con-
verges (to (x∞,A∞)), it does to a solution of the system f(x) = 0 & A[x, x | f ]=
I, where I is the identity operator: Ix = x, ∀x. This property of the method is
very helpful to those interested in solution’s sensitivity to small perturbations
in the data.
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- The bound on the error ‖x∞ − xn‖ obtained implies superlinear rate of
convergence. This bound, however, allows to estimate rate of convergence
not only asymptotically, but beginning with initial iterations. Moreover, it
suggests a new criterion for comparison of efficiency of various iterative methods
reflecting their common goal: locate a solution of the equation (1.4).

- The existence condition, the existence and uniqueness radii are shown to
be exact.

- The approach to the analysis of the method (1.5) adopted in this paper
provides yet another example (in addition to those considered in [6]) of the role
invariants of systems of difference equations can play in convergence analysis
of iterative methods.

The use of regularly continuous divided differences makes necessary recalling
some definitions and basic facts from [7] needed for understanding subsequent
developments. This material makes up the next section. Section 3 contains
derivation of the majorant generator and the convergence lemma preparing con-
vergence theorem in Section 4. The short fifth section contains brief discussion
of rate of convergence of Broyden’s method. Then we test the method numer-
ically on three nontrivial infinite-dimensional (including nonsmooth) problems
to demonstrate method’s practicability.

2. Regularly continuous divided differences

Though Broyden’s method (1.5) is defined for any operator f acting from
a convex subset D of a Banach space (say X) into a Hilbert one, the concept
of divided difference operator (briefly dd) makes sense in Banach spaces. So,
recalling its definition we are speaking in this section about Banach spaces.

Definition 2.1. A linear bounded operatorA from X into Y is called a divided
difference operator, if for any given pair (x1, x2) of points of D it satisfies the
(secant) equation

A(x1 − x2) = f(x1)− f(x2).

To emphasize its dependence on x1, x2, and f, such an operator is denoted
by the symbol [x1, x2 | f ].

For given x ∈ X and y ∈ Y, linear operators satisfying the equation Ax = y
constitute an affine manifold in the space L(X,Y) of all bounded linear opera-
tors between X and Y:

A0x = y & Ax = y =⇒ (A−A0)x = 0 =⇒ A ∈ A0 + Lx,

where Lx ⊂ L(X,Y) is the subspace of operators vanishing on x. So, the
symbol [x1, x2 | f ] should be understood as the notation for this manifold or,
more precisely, as its particular representative selected from it according to a
certain rule specified in advance. If [x1, x2 | f ] is selected to be continuous at x1

with respect to x2, then it is easy to see that [x1, x1 | f ] = f ′(x1). Otherwise,
the limit

lim
t→+0

[x, x + th | f ]h = lim
t→+0

t−1[f(x + th)− f(x)]
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(if it exists) may vary depending on h, ‖h‖ = 1. In this case, the limit is the
directional derivative f ′(x, h) of f in the direction h. The following proposition
lists for the record obvious properties of the set-valued map f 7→ [x1, x2 | f ].

Proposition 2.2. (1) [x1, x2 | f ] = f if and only if f is linear.

(2) [x1, x2 |αf1 + βf2] = α[x1, x2 | f1] + β[x1, x2 | f2].
(3) If f is a composition of the operators f1, f2: f = f1◦ f2, then

[x1, x2 | f ] = [f2(x1), f2(x2) | f1] [x1, x2 | f2].

Let N be the class of nondecreasing concave (and so continuous) functions
ω : [0,∞) → [0,∞) with ω(0) = 0. The typical representatives of this class are
the functions t 7→ ctp, 0 < p ≤ 1.

Definition 2.3. The dd [x1, x2 | f ] is said to be ω-regularly continuous on D,
if an ω ∈ N (call it regularity modulus) is known such that

ω−1(min{‖[x1, x2 | f ]‖, ‖[u1, u2 | f ]‖}+ ‖[x1, x2 | f ]− [u1, u2 | f ]‖)(2.1)

−ω−1(min{‖[x1, x2 | f ]‖, ‖[u1, u2 | f ]‖}) ≤ ‖x1 − u1‖+ ‖x2 − u2‖

for all x1, x2, u1, u2 ∈ D. We say also that it is regularly continuous on D, if it
has there a regularity modulus.

Concavity is understood in the sense of convex analysis [17], that is ω is
concave if it has convex subgraph {(s, t) | s ≥ 0 & t ≤ ω(s)}. Analogously,
ω−1 denotes the function whose closed epigraph cl{(s, t) | s ≥ 0 & t ≥ ω−1(s)}
is symmetrical to closure of the subgraph of ω with respect to the axis t = s.
Clearly, ω−1 is a convex function on [0,∞) vanishing at zero, increasing in
[0, ω(∞)], and equal to ∞ for all s > ω(∞) (if any).

Being monotone, the function ω has left- and right-hand derivatives at each
s ≥ 0 (they coincide everywhere except, perhaps, for a countable subset of
[0,∞)). In what follows, we denote the right-hand and two-sided derivatives
by the usual prime ( ′ ), whereas the backprime ( 8) will symbolize the left-hand
derivative.

If ω is linear: ω(t) = ct, then (2.1) becomes

(2.2) ‖[x1, x2 | f ]− [u1, u2 | f ]‖ ≤ c
(
‖x1−u1‖+‖x2−u2‖

)
, ∀x1, x2, u1, u2 ∈ D.

The dd [x1, x2 | f ] possessing this property is called Lipschitz continuous. For
a discussion on how a regularity modulus can be found for a selected dd the
reader is referred to [7].

We conclude this section with an immediate consequence of ω-regular con-
tinuity of a dd [x1, x2 | f ], which will be of use in the next section.

Lemma 2.4 ([5]). If dd [x1, x2 | f ] is ω-regularly continuous on D, then
∣∣∣ω−1

(
‖[x1, x2 | f ]‖

)
− ω−1

(
‖[u1, u2 | f ]‖

)∣∣∣
≤ ‖x1 − u1‖+ ‖x2 − u2‖, ∀x1, x2, u1, u2 ∈ D.
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It follows that

(2.3) ω−1
(
‖[x1, x2 | f ]‖

)
≥
(
ω−1

(
‖[u1, u2 | f ]‖

)
− ‖x1 − u1‖ − ‖x2 − u2‖

)
+

,

where the superscript + denotes the nonnegative part of a real number:

r+ := max{r, 0}.

3. Majorant generator and convergence lemma

As seen from (1.5), A+

(
f(x+)−f(x)

)
= −Af(x) = x+−x andA+ is invertible

provided A is invertible and x+ 6= x (that is f(x) 6= 0). So, invertibility of A0

implies invertibility of all An generated by Broyden’s method and the equality

(3.1) An = [xn, xn−1 | f ]
−1.

If f is differentiable at x0 and the derivative f ′(x0) is boundedly invertible,
then the natural choice for A0 is f ′(x0)

−1. However, we cannot recommend
this choice in general, since we do not assume here differentiability of f. What
we do assume is that A0 is invertible, so that A and f in (1.5) can be replaced
by their normalizations AA−1

0
and A0f without affecting the method. To save

indexation, let us assume (with no loss in generality) that A and f are already
normalized:

(3.2) A0 = [x0, x−1 | f ]
−1 = I.

The current iteration (x,A) induces the triple of reals

t̄ := ‖x− x0‖ , γ̄ := ‖x− x−‖ , δ̄ := ‖x+ − x‖.

Clearly, t̄+ := ‖x+ − x0‖ ≤ t̄ + δ̄. Also, γ̄+ = δ̄. The next lemma relates
δ̄+ := ‖x++ − x+‖ = ‖A+f(x+)‖ with the triple

(
t̄, γ̄, δ̄

)
. To make its statement

shorter, we use the abbreviations

(3.3) α := ω−1(1 − h) , γ̄0 := ‖x0 − x−1‖ , a := α− γ̄0.

Lemma 3.1. Let the selected dd [x1, x2 | f ] of f be ω-regularly continuous on

D.

If t̄+ + t̄ < a, then

δ̄+ ≤ δ̄

(
ω
(
a− t̄+ − t̄+ δ̄ + γ̄

)

ω
(
a− t̄+ − t̄

) − 1

)
.

Proof. δ̄+ ≤ ‖A+‖ · ‖f(x+)‖. By the Banach lemma on perturbations and in
view of (3.2),

(3.4) ‖A+‖
−1 ≥ ‖A0‖

−1 −‖A−1
+

−A−1
0

‖ ≥ 1− h−
∥∥[x+, x | f ]− [x0, x−1 | f ]

∥∥,
where by (2.1)
∥∥[x+, x | f ]− [x0, x−1 | f ]

∥∥

≤ ω
(
min

{
ω−1

(∥∥[x+, x | f ]
∥∥− h

)
, ω−1

(∥∥[x0, x−1 | f ]
∥∥− h

)}
+ ‖x+− x0‖
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+ ‖x− x−1‖
)
− ω

(
min

{
ω−1

(∥∥[x+, x | f ]
∥∥− h

)
, ω−1

(∥∥[x0, x−1 | f ]
∥∥− h

)})
.

Because of (2.3) and (3.2),

(3.5)
ω−1

(∥∥[x+, x | f ]
∥∥− h

)
≥
(
ω−1(1− h)− ‖x+ − x0‖ − ‖x− x−1‖

)
+

≥ (α− t̄+ − t̄− γ̄0)
+

.

So, due to concavity and monotonicity of ω,
∥∥[x+, x | f ]− [x0, x−1 | f ]

∥∥(3.6)

≤ ω
(
min

{(
α− t̄+ − t̄− γ̄0

)
+

, α
}
+ t̄+ + t̄+ γ̄0

)

− ω
(
min

{(
α− t̄+ − t̄− γ̄0

)
+

, α
})

= ω
((

α− t̄+ − t̄− γ̄0

)
+

+ t̄+ + t̄+ γ̄0

)
− ω

((
α− t̄+ − t̄− γ̄0

)
+

)
.

If this difference < 1− h, then (3.4) yields

‖A+‖ ≤
1

1− h− ω
((

α− t̄+ − t̄− γ̄0

)
+

+ t̄+ + t̄+ γ̄0

)
+ ω

((
α− t̄+ − t̄− γ̄0

)
+

) .

The difference (3.6) < 1 − h = ω(α) if and only if t̄+ + t̄ < a. Hence, this
assumption implies

(3.7) ‖A+‖ ≤
1

1− h− ω(α) + ω
(
a− t̄+ − t̄

) =
1

ω
(
a− t̄+ − t̄

) .

As to ‖f(x+)‖, note that the application of the classical Sherman-Morrison
formula to (1.5) gives

A−1
+

= A−1 +
f(x+)

‖x+ − x‖2
〈x+ − x, ·〉,

so that
∥∥A−1

+
−A−1

∥∥=‖f(x+)‖/‖x+−x‖ and ‖f(x+)‖= δ̄
∥∥[x+, x | f ]−[x, x− | f ]

∥∥
(because of (3.1)). As follows from (2.1), the last norm

≤ ω
(
min

{
ω−1

(∥∥[x+, x | f ]
∥∥− h

)
, ω−1

(∥∥[x, x− | f ]
∥∥− h

)}
+ ‖x+ − x‖

+ ‖x− x−‖
)
− ω

(
min

{
ω−1

(∥∥[x+, x | f ]
∥∥− h

)
, ω−1

(∥∥[x, x− | f ]
∥∥− h

)})
.

As in (3.5),

ω−1
(∥∥[x+, x | f ]

∥∥− h
)
≥ (α− t̄+ − t̄− γ̄0)

+

= a− t̄+ − t̄,

ω−1
(∥∥[x, x− | f ]

∥∥− h
)
≥ (α− t̄− t̄− − γ̄0)

+

= a− t̄− t̄−,

and so
∥∥[x+, x | f ]− [x, x− | f ]

∥∥ ≤ ω
(
min

{
a− t̄+ − t̄, a− t̄− t̄−

}
+ δ̄ + γ̄

)
(3.8)

− ω
(
min

{
a− t̄+ − t̄, a− t̄− t̄−

})

= ω
(
a− t̄+ − t̄+ δ̄ + γ̄

)
− ω

(
a− t̄+ − t̄

)
.
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Hence,

(3.9) ‖f(x+)‖ ≤ δ̄
(
ω
(
a− t̄+ − t̄+ δ̄ + γ̄

)
− ω

(
a− t̄+ − t̄

))
.

Together with (3.7) this results in

δ̄+ ≤ δ̄

(
ω
(
a− t̄+ − t̄+ δ̄ + γ̄

)

ω
(
a− t̄+ − t̄

) − 1

)
,

as claimed. �

The lemma suggests the following majorant generator g(t, γ, δ)=(t+, γ+, δ+):

t+ := t+ δ , γ+ := δ,

(3.10) δ+ := δ

(
ω(a− t+ − t+ δ + γ)

ω(a− t+ − t)
− 1

)
= δ

(
ω(a− 2t+ γ)

ω(a− 2t− δ)
− 1

)
.

We say that the triple q ′=(t ′, γ ′, δ ′) majorizes q=(t, γ, δ) (briefly q≺ q ′), if

t ≤ t ′ & γ ≤ γ ′ & δ ≤ δ ′.

The lemma states that q̄+ ≺ g(q̄).
Being fed with the initial triple q0, the generator iterates producing a majo-

rant sequence as long as the denominator in (3.10) remains defined:

&
n
2tn + δn < a.

Under this condition, we can ensure convergence of the sequence (xn,An) gen-
erated by the method (1.5) from the starter (x0,A0) to a solution of the system

(3.11) f(x) = 0 & A[x, x | f ] = I.

Lemma 3.2. If q0 is such that q̄0 ≺ q0 & &
n
2tn + δn < a, then

(1) &
n
q̄n ≺ qn;

(2) γ∞ = δ∞ = 0 & &
n
tn ≤ 0.5(a− δn);

(3) the sequence (xn,An) remains in the ball B
(
(x0,A0), (t∞, rA)

)
, where

rA :=
ω(a− δ0)− ω(a− 2t∞)

ω(a− δ0) ω(a− 2t∞)
+

ω(a+ γ0)− ω(a− δ0)

1− ω(a+ γ0) + ω(a− δ0)
,

and converges to a solution (x∞,A∞) of the system (3.11);
(4) x∞ is the only solution of the equation f(x) = 0 in the ball B(x0, a−t∞);
(5) for all n = 0, 1, . . .,

‖f(xn+1)‖ ≤ δn
(
ω(a− 2tn + γn)− ω(a− 2tn − δn)

)
,

∆n := ‖x∞ − xn‖ ≤ t∞ − tn,

∆n+1

∆n
≤

ω(∆n−1)

ω(a− 2tn + γn)
;

(6) all these inequalities are exact in the sense that they hold as equalities

for a scalar quadratic polynomial.
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Proof. (1) The generator (3.10) is monotone in the sense that q ≺ q ′ =⇒ g(q) ≺
g(q ′). Besides, we have noted above that q̄+ ≺ g(q̄). Hence, q̄+ ≺ g(q) = q+.
By induction, q̄0≺ q0 =⇒ &

n
q̄n≺ qn.

(2) 2tn+δn < a ⇐⇒ tn < 0.5(a−δn). Thus, the sequence tn is increasing and
bounded, so that t∞ is finite. Taking the limits in tn+1 = tn+δn & γn+1 = δn
yields γ∞ = δ∞ = 0.

(3) By (1), &
n
δ̄n ≤ δn and so

‖xn+m−xn‖ ≤
n+m−1∑

k=n

‖xk+1−xk‖ =

n+m−1∑

k=n

δ̄k ≤
n+m−1∑

k=n

δk <

∞∑

k=n

δk = t∞− tn.

This shows that xn is a Cauchy sequence and so converges: ∃ limxn =: x∞.
Setting n = 0 results in xn ∈ B(x0, t∞), while forcingm to∞ yields ‖x∞−xn‖ ≤
t∞ − tn. Moreover, in view of (3.9) and because of concavity of ω,

‖f(xn+1)‖ ≤ δ̄n

(
ω
(
a− t̄n+1 − t̄n + δ̄n + γ̄n

)
− ω

(
a− t̄n+1 − t̄n

))

≤ δn

(
ω
(
a− tn+1 − tn + δn + γn

)
− ω

(
a− tn+1 − tn

))

= δn

(
ω(a− 2tn + γn)− ω(a− 2tn − δn)

)
→ 0,(3.12)

so that f(x∞) = 0. Consider now the operators Am+n − An. By the classic
Banach lemma (see, for example, [12, Theorem 1.2.1]),

(3.13) ‖Am+n −An‖ ≤
‖An‖2

∥∥A−1
m+n −A−1

n

∥∥
1− ‖An‖ ·

∥∥A−1
m+n −A−1

n

∥∥ ,

where
∥∥A−1

m+n −A−1
n

∥∥ ≤
∑m+n−1

k=n

∥∥A−1
k+1 −A−1

k

∥∥. By (3.1) and (3.8),
∥∥A−1

k+1 −A−1
k

∥∥ =
∥∥[xk+1, xk | f ]− [xk, xk−1 | f ]

∥∥
≤ ω(a− 2tk + γk)− ω(a− 2tk − δk).

According to (3.10), tk = tk−1+ δk−1 and γk = δk−1. Therefore, a− 2tk+γk =
a− 2tk−1 − δk−1,

∥∥A−1
k+1 −A−1

k

∥∥ ≤ ω(a− 2tk−1 − δk−1)− ω(a− 2tk − δk) and

‖A−1
m+n −A−1

n ‖ ≤
m+n−1∑

k=n

(
ω(a− 2tk−1 − δk−1)− ω(a− 2tk − δk)

)

= ω(a− 2tn−1 − δn−1)− ω(a− 2tm+n−1 − δm+n−1)

< ω(a− 2tn−1 − δn−1)− ω(a− 2t∞).(3.14)

This shows that A−1
n is a Cauchy sequence in the Banach space L(X,H) of

bounded linear operators from X to H and so converges to a limit A−1
∞

. As
A−1

n = [xn, xn−1 | f ], taking limits yields A−1
∞

= [x∞, x∞ | f ] or A∞[x∞, x∞ | f ]
= I. Besides, (3.14) implies

∥∥A−1
m+1 −A−1

1

∥∥ < ω(a− δ0)− ω(a− 2t∞) and so

‖Am+1 −A1‖ <
‖A1‖2

(
ω(a− δ0)− ω(a− 2t∞)

)

1− ‖A1‖
(
ω(a− δ0)− ω(a− 2t∞)

) ,
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where ‖A1‖ ≤ 1/ω(a− δ0) by (3.7). It follows that

‖Am+1 −A1‖ <
ω(a− δ0)− ω(a− 2t∞)

ω(a− δ0) ω(a− 2t∞)
.

Also, as seen from (3.13) and (3.2),

‖A1 −A0‖ ≤
‖A−1

1 −A−1
0
‖

1− ‖A−1
1 −A−1

0
‖
,

where ‖A−1
1 −A−1

0
‖ ≤ ω(a+ γ0)− ω(a− δ0) by (3.8). Therefore,

‖A1 −A0‖ ≤
ω(a+ γ0)− ω(a− δ0)

1− ω(a+ γ0) + ω(a− δ0)

and

‖Am+1 −A0‖ ≤ ‖Am+1 −A1‖+ ‖A1 −A0‖

≤
ω(a− δ0)− ω(a− 2t∞)

ω(a− δ0) ω(a− 2t∞)
+

ω(a+ γ0)− ω(a− δ0)

1− ω(a+ γ0) + ω(a− δ0)
=: rA.

(4) Let x∗ be another solution of the equation f(x) = 0. Then 0 = f(x∗) −
f(x∞) = [x∗, x∞ | f ](x∗−x∞), which shows that the dd [x∗, x∞ | f ] is not invert-
ible and so 1 ≤ ‖I − [x∗, x∞ | f ]‖ =

∥∥[x0, x−1 | f ] − [x∗, x∞ | f ]
∥∥. By (2.1), this

norm

≤ ω
(
min

{
ω−1(1 − h) ,

(
ω−1

(∥∥[x∗, x∞ | f ]
∥∥− h

)}
+ ‖x∗ − x0‖+ t̄∞ + γ̄0

)
−

ω
(
min

{
ω−1(1− h) ,

(
ω−1

(∥∥[x∗, x∞ | f ]
∥∥− h

)})
.

Here,

ω−1
(∥∥[x∗, x∞ | f ]

∥∥− h
)
≥
(
ω−1(1−h)− ‖x∗−x0‖ − t̄∞− γ̄0

)
+

≥ (α− ‖x∗−x0‖ − t∞− γ̄0)
+

by (2.3). Therefore,

1 ≤ ω
(
min

{
α , (α− ‖x∗− x0‖ − t∞− γ̄0)

+
}
+ ‖x∗− x0‖+ t∞+ γ̄0

)

− ω
(
min

{
α , (α− ‖x∗− x0‖ − t∞− γ̄0)

+
})

= ω
(
(a− ‖x∗− x0‖ − t∞)

+

+ ‖x∗− x0‖+ t∞+ γ̄0

)
−ω

(
(a− ‖x∗− x0‖− t∞)

+
)

≤ ω
(
‖x∗− x0‖+ t∞+ γ̄0

)

(because of concavity of ω) and ‖x∗−x0‖ ≥ ω−1(1)− γ̄0 − t∞ ≥ a− t∞ ≥ 0.5a.
(5) The bounds for f(xn+1) and ∆n have been proved above. It remains to

obtain one for the ratio ∆n+1/∆n. As

xn+1 − x∞ = xn − x∞ −Anf(xn)

= An[xn, xn−1 | f ](xn − x∞)−An

(
f(xn)− f(x∞)

)

= An[xn, xn−1 | f ](xn − x∞)−An[xn, x∞ | f ](xn − x∞)

= An

(
[xn, xn−1 | f ]− [xn, x∞ | f ]

)
(xn − x∞),
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we have the inequality ∆n+1 ≤ ∆n‖An‖
∥∥[xn, xn−1 | f ]− [xn, x∞ | f ]

∥∥. By (3.7),

‖An‖ ≤
1

ω
(
a− t̄n − t̄n−1

) ≤
1

ω
(
a− tn − tn−1

) =
1

ω
(
a− 2tn + γn

) .

Besides, by (2.1)
∥∥[xn, xn−1 | f ]− [xn, x∞ | f ]

∥∥

≤ ω
(
min

{
ω−1

(
‖[xn, xn−1 | f ]− h

)
, ω−1

(
‖[xn, x∞ | f ]− h

)}
+ ‖xn−1 − x∞‖

)

− ω
(
min

{
ω−1

(
‖[xn, xn−1 | f ]− h

)
, ω−1

(
‖[xn, x∞ | f ]− h

)})
,

where ω−1
(
‖[xn, x∞ | f ]− h

)
≥
(
ω−1

(
‖[xn, xn−1 | f ]− h

)
− ‖xn−1 − x∞‖

)
+

by

(2.3). So,
∥∥[xn, xn−1 | f ]− [xn, x∞ | f ]

∥∥

≤ ω
((

ω−1
(
‖[xn, xn−1 | f ]− h

)
−∆n−1

)
+

+∆n−1

)

− ω
((

ω−1
(
‖[xn, xn−1 | f ]− h

)
−∆n−1

)
+

)

≤ ω(∆n−1).

Thus, ∆n+1 ≤ ∆n
ω(∆n−1)

ω
(
a− 2tn + γn

) .

(6) For any scalar function f with ω-regularly continuous dd’s, the applica-
tion of the method (1.5) produces the sequence of triples

(t̄n, γ̄n, δ̄n) = (xn − x0 , xn − xn−1 , xn+1 − xn).

If (t, γ, δ)=(x−x0 , x−x− , x+−x), then t+ := t+ δ=x−x0 +x+−x=x+−x0,
γ+ := δ = x+ − x, and

δ+ := δ

(
ω(a− 2t+ γ)

ω(a− 2t− δ)
− 1

)
= (x+ − x)

(
ω(a+ 2x0 − x− x−)

ω(a+ 2x0 − x+ − x)
− 1

)
.

So, (t, γ, δ) = (x − x0 , x − x− , x+ − x) implies (t+, γ+, δ+) = (x+ − x0 , x+ −
x , x++ − x+) if and only if

(x+ − x)

(
ω(a+ 2x0 − x− x−)

ω(a+ 2x0 − x+ − x)
− 1

)
= −

f(x+)

[x+, x | f ]
.

For linear ω (the case of Lipschitz continuity of the dd), this equation becomes

(3.15)
(x+ − x)(x+ − x−)

b− x− x+

= −
f(x+)

[x+, x | f ]
, b := a+ 2x0.

This functional equation is solved by the quadratic polynomial f(x) := x2 −
b x+ c. Indeed, for it [x+, x | f ] = x+ + x− b,

x+ − x = −
f(x)

[x, x− | f ]
= −

f(x)

x+ x− − b
=

f(x)

b− 2x+ γ
,
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and x+ − x− = γ +
f(x)

b− 2x+ γ
, so that (3.15) can be rewritten as

f(x)

b− 2x+ γ

(
γ +

f(x)

b − 2x+ γ

)

= f

(
x+

f(x)

b− 2x+ γ

)

=

(
x+

f(x)

b− 2x+ γ

)2

− b

(
x+

f(x)

b− 2x+ γ

)
+ c

=

(
f(x) + x(b− 2x+ γ)

)2
− b
(
f(x) + x(b − 2x+ γ)

)
(b − 2x+ γ) + c(b− 2x+ γ)2

(b − 2x+ γ)2

or, equivalently,

f(x)
[
f(x) + γ(b− 2x+ γ)

]

=
[
f(x) + x(b− 2x+ γ)

]2
− b
[
f(x) + x(b − 2x+ γ)

]
(b− 2x+ γ)

+ c(b − 2x+ γ)2.

Expanding the expression on the right yields

f(x) + 2xf(x)(b − 2x+ γ) + x2(b − 2x+ γ)2 − bf(x)(b− 2x+ γ)

− bx(b − 2x+ γ)2 + c(b− 2x+ γ)2

= (x2 − bx+ c)(b − 2x+ γ)2 − f(x)(b − 2x)(b− 2x+ γ) + f(x)2

= f(x)
[
(b− 2x+ γ)2 − (b − 2x)(b− 2x+ γ) + f(x)

]

= f(x)
[
γ(b− 2x+ γ) + f(x)

]
,

the expression on the left. Therefore, (t, γ, δ) = (t̄, γ̄, δ̄) implies (t+, γ+, δ+) =
(t̄+, γ̄+, δ̄+) and by induction

γ0=x0 − x−1 & δ0=−
f(x0)

[x0, x−1 | f ]

=⇒ &
n
(tn, γn, δn)=(xn − x0, xn − xn−1, xn+1 − xn).

Hence the claim. �

4. Convergence theorem

As Lemma 3.2 shows, in order to guarantee convergence of xn, one has to
choose such starters x0, x−1,A0, q0 that q̄0 ≺ q0 & &

n
2tn + δn < a. So,

our next task is to get a precise description of the set of all q0 that result in
&
n
2tn + δn < a (the convergence domain of the generator (3.10)).

Proposition 4.1. Let (tn , γn , δn) be the sequence generated by the generator

(3.10) from the starter (t0 , γ0 , δ0). Then
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(1) &
n
2tn + δn<a ⇐⇒ δ0≤f∞(t0 , γ0), where

f0(t , γ) := ω−1(1 − h)− 2t− γ

for all (t , γ) with 2t+ γ ≤ ω−1(1− h) and fn+1(t , γ) the unique solution for δ
of the equation

fn(t+ δ , δ) = δ

(
ω(a− 2t+ γ)

ω(a− 2t− δ)
− 1

)
.

(2) The function f∞ is a solution of the system

(4.1)

x
(
t+ x(t , γ) , x(t , γ)

)
=x(t , γ)

(
ω(a− 2t+ γ)

ω
(
a− 2t− x(t , γ)

) − 1

)
& x(t∞ , γ)=0.

(3) The function I(t , γ , δ) := f∞(t , γ) − δ is an invariant of the generator

(3.10).

Proof. (1) 2tn + δn < a ⇐⇒ δn < a − 2tn = : f0(tn , γn). Suppose that for
some k ≥ 0 δn−k < fk(tn−k , γn−k), where fk is decreasing with respect to the
first argument to fk(t∞ , γ) = 0 and not increasing with respect to the second.
Using (3.10), rewrite this inequality as

δn−k−1

(
ω(a− 2tn−k−1 + γn−k−1)

ω(a− 2tn−k−1 − δn−k−1)
− 1

)
< fk(tn−k−1 + δn−k−1 , δn−k−1)

or, equivalently, as Fk(tn−k−1 , γn−k−1 , δn−k−1) > 0, where

(4.2) Fk(t , γ , δ) := fk(t+ δ , δ)− δ

(
ω(a− 2t+ γ)

ω(a− 2t− δ)
− 1

)
.

The function Fk is decreasing in δ ∈ [0 , t∞ − t] from Fk(t , γ , 0) = fk(t , 0) > 0
to

Fk(t , γ , t∞− t) = fk(t+ t∞− t , t∞− t)− (t∞− t)

(
ω(a− 2t+ γ)

ω(a− 2t− t∞+ t)
− 1

)

= fk(t∞ , t∞− t)− (t∞− t)

(
ω(a− 2t+ γ)

ω(a− t− t∞)
− 1

)

= −(t∞− t)

(
ω(a− 2t+ γ)

ω(a− t− t∞)
− 1

)
< 0.

Therefore, the equation Fk(t , γ , δ) = 0 is uniquely solvable for δ ∈ (0 , t∞− t).
We denote the solution fk+1(t , γ):

(4.3) Fk

(
t , γ , fk+1(t , γ)

)
= 0.

The function fk+1 is decreasing in t ∈ [0 , t∞). To see it, note that it follows
from the induction hypothesis and properties of ω, that Fk is decreasing in
both t and δ. So,

t < t ′ =⇒Fk

(
t, γ, fk+1(t, γ)

)
= 0 = Fk

(
t′, γ , fk+1(t

′, γ)
)
< Fk

(
t, γ, fk+1(t

′, γ)
)

=⇒fk+1(t
′, γ) < fk+1(t, γ).
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Similarly,

γ < γ′ =⇒ Fk

(
t, γ, fk+1(t, γ)

)
= 0 = Fk

(
t, γ′, fk+1(t, γ

′)
)
<Fk

(
t, γ, fk+1(t, γ

′)
)

=⇒ fk+1(t, γ
′) < fk+1(t, γ).

Besides, by the induction hypothesis, Fk(t∞ , γ , 0) = fk(t∞ , 0) = 0, which
means according to (4.3) that fk+1(t∞ , γ) = 0. Thus,

δn−k < fk(tn−k , γn−k) =⇒ δn−k−1 < fk+1(tn−k−1 , γn−k−1).

By induction, 2tn + δn < a ⇐⇒ δ0 < fn(t0 , γ0) and

&
n
2tn + δn < a ⇐⇒ δ0 ≤ inf

n
fn(t0 , γ0).

The sequence fn is pointwise decreasing:

(4.4) &
n
fn+1(t, γ) < fn(t , γ).

This is proved inductively. By definition,

f1(t, γ) ∈ (0 , t∞ − t) ⊂ (0 , 0.5a− t) =
(
0 , 0.5f0(t , γ)

)
,

so that f1(t , γ) < f0(t , γ). Suppose now that fn(t , γ) < fn−1(t , γ) for some
n ≥ 1. Then by (4.3) and (4.2)

Fn−1

(
t , γ , fn(t , γ)

)
= 0 = Fn

(
t , γ , fn+1(t , γ)

)

= fn
(
t+ fn+1(t , γ) , fn+1(t , γ)

)
− fn+1(t , γ)

(
ω(a− 2t+ γ)

ω
(
a− 2t− fn+1(t , γ)

) − 1

)

< fn−1

(
t+ fn+1(t , γ) , fn+1(t , γ)

)
− fn+1(t , γ)

(
ω(a− 2t+ γ)

ω
(
a− 2t− fn+1(t , γ)

) − 1

)

= Fn−1

(
t , γ , fn+1(t , γ)

)
=⇒ fn+1(t , γ) < fn(t , γ),

because Fn−1 is decreasing with respect to the third argument. Thus,

fn(t , γ) < fn−1(t , γ) =⇒ fn+1(t , γ) < fn(t , γ).

By induction, (4.4) is proved. It follows that inf
n

fn(t0 , γ0) = f∞(t0 , γ0) and

&
n
2tn + δn < a ⇐⇒ δ0 ≤ f∞(t0 , γ0).

(2) Since the sequence fn converges, we can take limits in (4.3) to get
F∞

(
t , γ , f∞(t , γ)

)
= 0, that is

f∞

(
t+ f∞(t , γ) , f∞(t , γ)

)
= f∞(t , γ)

(
ω(a− 2t+ γ)

ω
(
a− 2t− f∞(t , γ)

) − 1

)
.

Besides, we have seen above that fk(t∞ , γ) = 0 =⇒ fk+1(t∞ , γ) = 0, so that
f∞(t∞ , γ) = 0. Hence, f∞ satisfies (4.1).
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(3) It suffices to show that I(t , γ , δ) = 0 =⇒ I(t+ , γ+ , δ+) = 0. Indeed,
I(t , γ , δ) = 0 =⇒ f∞(t , γ) = δ, so that

I(t+ , γ+ , δ+) = f∞(t+ , γ+)− δ+ = f∞(t+ δ , δ)− δ

(
ω(a− 2t+ γ)

ω
(
a− 2t− δ)

− 1

)

= f∞

(
t+ f∞(t , γ) , f∞(t , γ)

)
− f∞(t , γ)

(
ω(a− 2t+ γ)

ω
(
a− 2t− f∞(t , γ)

) − 1

)
= 0

by (2). �

For linear ω (ω(t) = ct), the generator (3.10) simplifies:

(4.5) t+ := t+ δ , γ+ := δ , δ+ := δ
γ + δ

a− 2t− δ
,

where a = c−1−‖x0 −x−1‖. Consequently, the proposition can be stated more
rigorously:

Proposition 4.2. (1) The function I(t , γ , δ) := (a− 2t)2 − 4δ(a− 2t+ γ) is
an invariant of the generator (4.5).

(2) The sequence (tn, γn, δn), generated by the generator (4.5) from the

starter (0, γ0, δ0), converges (t∞<∞) if and only if

I0 := I(0, γ0, δ0) =
(
c−1 − γ0

)2
− 4c−1δ0) ≥ 0.

In this case,

&
n
2tn+δn<a ⇐⇒ tn=0.5

(
c−1−γ0

)
−δn−

√
δn(γn+ δn) + 0.25I0= :f(γn, δn).

(3) The function f is a solution of the system

(4.6) x

(
δ , δ

γ + δ

a− 2x(γ, δ)− δ

)
= x(γ, δ) + δ & x(0 , 0)= t∞.

Proof. (1) By (4.5),

I(t+ , γ+ , δ+) = (a− 2t+)
2 − 4δ+(a− 2t+ + γ+)

= (a− 2t− 2δ)2 − 4δ
δ + γ

a− 2t− 2δ + δ
(a− 2t− 2δ + δ)

= (a− 2t)2 − 4δ(a− 2t) + 4δ 2 − 4δ(δ + γ)

= (a− 2t)2 − 4δ(a− 2t)− 4δγ = I(t , γ , δ).

(2) If t∞ < ∞, then γn+1 = δn = tn+1 − tn → 0. Then by (1), I(0 , γ0 , δ0) =
I(t∞ , 0 , 0), i.e., a2 − 4δ0(a+ γ0) = (a− 2t∞)2 ≥ 0. Conversely, if I0 ≥ 0, then
&
n
I(tn , γn , δn) = I0 ≥ 0, whence

tn = 0.5
(
a− δn −

√
δ 2
n + γnδn + 0.25I0

)
≤ 0.5

(
a−

√
I0

)

and t∞ = 0.5
(
a−

√
I0
)
= 0.5

(
c−1 − γ0 −

√
I0
)
< ∞.
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(3) By (1), I(t , γ , δ) = (a− 2t∞)2 = I(t+ , γ+ , δ+)

⇐⇒ t = 0.5a− δ −
√
δ(γ + δ) + (0.5a− t∞)2 = : f(γ, δ) & t+ = f(γ+, δ+)

=⇒ f(γ, δ) + δ = f

(
δ , δ

γ + δ

a− 2f(γ, δ)− δ

)
.

Besides, f(γ, δ) = 0.5a− δ −
√
δ(γ + δ) + (0.5a− t∞)2 =⇒ f(0 , 0) = t∞. �

Now, to get the convergence theorem for operators with ω-regularly contin-
uous dd’s we need only to replace the condition &

n
2tn + δn < a in Lemma 3.2

by its equivalent in terms of the starter (0 , γ0 , δ0) provided by Proposition 4.1.

Theorem 4.3. Let the selected dd [x1, x2 | f ] of f be ω-regularly continuous on

D. If the starters x0,A0, γ0 , δ0 are such that

‖x0 − x−1‖ ≤ γ0 &
∥∥A0f(x0)

∥∥ ≤ δ0 ≤ f∞(0 , γ0),

where f∞ is the function of Proposition 4.1, then

(1) γ∞ = δ∞ = 0 and

&
n

(
‖xn−x0‖ ≤ tn ≤ 0.5(a− δn) & ‖xn−xn−1‖ ≤ γn & ‖xn+1−xn‖ ≤ δn

)
;

(2) the sequence (xn ,An) generated by the method (1.5) from the starter

(x0 ,A0) converges to a solution (x∞ ,A∞) of the system (4.1);
(3) x∞ is the only solution of the equation f(x) = 0 in the ball B(x0 , a− t∞);
(4) for all n = 0, 1, . . . ,

‖f(xn+1)‖ ≤ δn
(
ω(a− 2tn + γn)− ω(a− 2tn − δn)

)
,

∆n := ‖x∞ − xn‖ ≤ t∞ − tn,

∆n+1

∆n
≤

ω(∆n−1)

ω(a− 2tn + γn)
.(4.7)

For operators with Lipschitz continuous dd’s, we use in Lemma 3.2 the
equivalent of the condition &

n
2tn + δn < a provided by Proposition 4.2:

&
n
2tn + δn < c−1 − γ0 ⇐⇒ 4c−1δ0 ≤

(
c−1 − γ0

)2
.

The result is the following:

Corollary 4.4. Let the selected dd [x1, x2 | f ] of f be Lipschitz continuous on

D in the sense of (2.2). If the starters x0, x−1,A0, γ0 , δ0 are such that

‖x0 − x−1‖ ≤ γ0 & ‖A0f(x0)‖ ≤ δ0 ≤
a2

4(a+ γ0)
,

then

(1) γ∞=δ∞=0, I0 :=
(
c−1 − γ0

)2
− 4c−1δ0 ≥ 0, and for all n ≥ 1

‖xn − x0‖ ≤ tn = 0.5
(
c−1 − γ0 − δn −

√
δ 2
n + γnδn + 0.25I0

)
,

‖xn − xn−1‖ ≤ γn,
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‖Anf(xn)‖ ≤ δn;

(2) the sequence (xn ,An) generated by the method (1.5) from the starter

(x0 ,A0) remains in the ball B ((x0 ,A0) , (t∞, rA)), where

t∞ = 0.5
(
c−1 − γ0 −

√
I0

)
, rA :=

c−1 − γ0 − δ0 −
√
I0

c(c−1 − γ0 − δ0)
√
I0

+
γ0 + δ0

1− c(γ0 + δ0)
,

and converges to a solution (x∞ ,A∞) of the system

f(x) = 0 & A[x, x | f ] = I;

(3) x∞ is the only solution of the equation f(x)=0 in the ball

B
(
x0 , 0.5(a−t∞)

)
;

(4) for all n = 0, 1, . . . ,

‖f(xn+1)‖ ≤ cδn(γn + δn),

∆n := ‖x∞ − xn‖ ≤ δn +
√
δ 2
n + γnδn + 0.25I0 − 0.5

√
I0,

∆n+1

∆n
≤

∆n−1

γn + 2
√
γ2
n + γnγn−1 + 0.25I0

.(4.8)

5. Rate of convergence

The bound (4.7) shows that the sequence xn converges (if and when) to
x∞ superlinearly. It should be stressed that this result applies also to non-
smooth operators. Superlinear convergence alone, however, is insufficient to
judge merits of an iterative method. Theorem 4.3 offers a more firm ground
for comparison of various methods. By (4.7),

∆n+1 ≤ ∆nω(∆n−1)/ω(a− 2t∞) = ∆nω0(∆n−1),

where ω0(t) := ω(t)/ω(a − 2t∞). Consider the related system of difference
equations:

(5.1) u+ := uω0(v) , v+ := u.

It is easy to see that this generator produces a majorant sequence un for ∆n:
∆0 ≤ u0 =⇒ &

n
∆n ≤ un. This sequence can be described by a one-dimensional

difference equation of the type un+1 = f(un). If such f exists, then by (5.1)
v = f(u) and v+ = u = f(u+) = f

(
uω0(v)

)
= f

(
uω0(f(u))

)
, so that f must

satisfy the functional equation

(5.2) x
(
uω0(x(u))

)
= u.

Conversely, a solution f of this equation determines the one-dimensional dif-
ference equation un+1 = f(un) that, given u0, generates the sequence un of
estimates for errors ∆n : &

n
∆n ≤ un. By Theorem 4.3, ∆0 ≤ t∞, so that t∞

is a natural candidate for u0. Thus, if one knows a solution of the functional
equation (5.2), he is able to get a priori estimations for ∆n before running the
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infinite-dimensional process (1.5). The equation (5.2) can be solved numeri-
cally by one of the iterative methods applicable to nondifferentiable operators,
Broyden’s method included.

The above remark suggests a novel approach to comparison of efficiency of
iterative methods. Consider a situation when analyses of two iterative methods

x+ := Fi(x), i = 1, 2,

produced two sequences u
(1)
n and u

(2)
n of upper bounds for the respective errors

∆
(1)
n and ∆

(2)
n . Clearly, if &

n
u(1)
n ≤ u(2)

n , we would prefer the first method.

However, it is an ideal situation. More realistically, suppose that
m

&
n=0

u(1)
n ≤ u(2)

n

and
∞

&
n=m+1

u(2)
n ≤ u(1)

n . Then, the obvious decision is to use F1 for the first

m + 1 iterations and then switch to F2. In general, &
n
∆n ≤ min

{
u(1)
n , u(2)

n

}

and one should use F1, if u
(1)
n ≤ u

(2)
n , and F2, otherwise. We see that different

methods can be combined to create new more efficient ones.
In the case of linear ω, (4.8) implies

∆n+1 ≤ α∆n∆n−1, α := I−1/2
0

or, equivalently, α∆n+1 ≤ α∆n ·α∆n−1. The corresponding difference equation
is un+1 = un un−1. The variable change vn = lnun yields vn+1 = vn + vn−1,
the familiar Fibonacci difference equation [1]. Its solution is

vn = Fibn−1v1 + Fibnv0,

where Fibn is the n-th Fibonacci number:

Fibn =
1
√
5

(
1 +

√
5

2

)n

−
1
√
5

(
1−

√
5

2

)n

.

It follows that

α∆n ≤ un = exp(vn) = exp
(
Fibn−1v1 + Fibnv0

)

= exp
(
Fibn−1 lnu1 + Fibn lnu0

)

= exp
(
ln
(
u
Fibn−1

1 uFibn
0

))
= u

Fibn−1

1 uFibn
0

.

By Corollary 4.4, ∆0 ≤ 0.5
(
a−

√
I0
)
and

∆1 ≤ δ1 +
√
δ 2
1 + δ1δ0 + 0.25I0 − 0.5

√
I0.

So, we can take u0 = 0.5
(
a−

√
I0
)
and

u1 = δ1 +
√
δ 2
1 + δ1δ0 + 0.25I0 − 0.5

√
I0,

where δ1 = δ0(γ0 + δ0)/(a− δ0) by (4.5). Hence,

∆n≤
√
I0u

Fibn−1

1 uFibn
0

, u0 := 0.5
(
a−

√
I0

)
,
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u1 := δ1 +
√
δ 2
1 + δ1δ0 + 0.25I0 − 0.5

√
I0.

6. Applications

As seen from (1.5), implementation of the method does not require the
knowledge of the regularity modulus or the Lipschitz constant, which are
needed for convergence analysis. One should also has in mind that the conver-
gence conditions given by Theorem 4.3 and Corollary 4.4 are only sufficient and
so the iterations (1.5) may converge even when these conditions are violated.
Therefore, the lack of information about properties of the operator of interest
should not prevent a practitioner from using the method. The applications
presented in this section can serve as illustrations for this remark.

6.1. Complementarity problem

Let H, C, and g : H → H be a Hilbert space, a closed cone in it, and
a (generally nonsmooth) operator acting on H, respectively. The problem of
finding a solution of the system

(6.1) x ∈ C & g(x) ∈ C ∗ & 〈x ,g(x)〉 = 0,

where C ∗ is the dual cone: C ∗ :=
{
y ∈ H

∣∣ 〈x , y〉 ≥ 0 , ∀x ∈ C
}
, is called [9]

complementarity problem (briefly CP(C,g)). Its special case

(6.2) x ∈ E
n &

n

&
i=1

(
xi ≥ 0 & gi(x) ≥ 0 & xigi(x) = 0

)

is the subject of vast literature (see [4] ,[9]). In particular, Mangasarian in [18]
proved a theorem establishing equivalence between the problem (6.2) and an
operator equation. His result can be stated as:

Proposition 6.1 ([18]). Let C and ϕ : R → R be the standard positive cone

of En and any strictly increasing function with ϕ(0) = 0. Define the operator

f : En → E
n by setting

f(x)i := ϕ(|xi − gi(x)|)− ϕ(xi)− ϕ(gi(x)), i = 1, . . . , n.

A vector x=(x1, . . . , xn) solves CP (C,g) if and only if f(x)=0.

Mangasarian’s theorem can be extended to any separable Hilbert space H

using the fact that it has an orthonormal basis {ek}∞1 (see, for example, [11,
Ch.IV] or [3, Corollary 2.1.8]), so that each x ∈ H has the unique representation
x =

∑∞

1 〈x , ek〉ek. Taking for C the standard positive cone

C :=
{
x ∈ H

∣∣∣ &
k
〈x , ek〉 ≥ 0

}
,

we obtain C ∗ = C and g(x) ∈ C ∗ ⇐⇒ &
k
〈g(x) , ek〉 ≥ 0. With this choice of

C, CP(C,g) becomes: find x ∈ H such that

(6.3) &
k

(
〈x , ek〉 ≥ 0 & 〈g(x) , ek〉 ≥ 0 & 〈x , ek〉〈g(x) , ek〉 = 0

)
.
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Proposition 6.2. Let H and {ek}∞1 be a separable Hilbert space and an or-

thonormal basis in it, respectively. Let ϕ be any strictly increasing function on

R with ϕ(0) = 0. Define f : H → H by setting coordinates 〈f(x) , ek〉 of f(x) to

ϕ
(
|〈g(x) − x , ek〉|

)
− ϕ

(
〈g(x) , ek〉

)
− ϕ

(
〈x , ek〉

)
.

Then x ∈ H solves (6.3) if and only if f(x) = 0.

Proof. Fix a k ∈ N and let for short a := 〈x , ek〉 and b := 〈g(x) , ek〉. The
claim reduces to

(6.4) a ≥ 0 & b ≥ 0 & ab = 0 ⇐⇒ ϕ(|a− b|) = ϕ(a) + ϕ(b).

Because of the symmetry a ↔ b, it suffices to consider the case a ≥ b. If the
left side of (6.4) is true, then a ≥ b = 0 and so the right side is true also.
Conversely, suppose that ϕ(a− b) = ϕ(a) + ϕ(b). The following situations are
conceivable:

(i) a ≥ b > 0, (ii) a ≥ b = 0, (iii) a > 0 > b, (iv) a = 0 > b, (v) 0 > a ≥ b.

We must show that only (ii) is possible if ϕ(a− b) = ϕ(a) +ϕ(b). Indeed, as ϕ
is increasing and ϕ(0) = 0,

(i) =⇒ ϕ(a) ≥ ϕ(b) > 0 =⇒ ϕ(a) > ϕ(a− b) = ϕ(a) + ϕ(b) > ϕ(a),

(iii) =⇒ ϕ(a) > 0 > ϕ(b) =⇒ ϕ(a) < ϕ(a− b) = ϕ(a) + ϕ(b) < ϕ(a),

(iv) =⇒ ϕ(a) = 0 > ϕ(b) =⇒ 0 = ϕ(a) < ϕ(|b|) = ϕ(a− b) = ϕ(a) + ϕ(b)

= ϕ(b) < 0,

(v) =⇒ 0 > ϕ(a) ≥ ϕ(b) =⇒ 0 ≤ ϕ(a− b) = ϕ(a) + ϕ(b) < 0.

Thus, in each of these four cases, ϕ(a − b) 6= ϕ(a) + ϕ(b), while (ii) implies
a ≥ 0 & b ≥ 0 & ab = 0. �

Inasmuch as the Hilbert space L2[0, 1] of square integrable functions on [0 , 1]
is separable [11], [3] (and so has an orthonormal basis) and because the function
t 7→ t can be taken for ϕ, we have:

Corollary 6.3. A function x ∈ L2[0, 1] solves the system

(6.5) &
0≤t≤1

(
x(t) ≥ 0 & g(x)(t) ≥ 0 & x(t)g(x)(t) = 0

)

if and only if f(x)(t) := min
{
x(t) ,g(x)(t)

}
= 0.

We have applied the method (1.5) to the problem (6.5) with

g(x)(t) := x(t) − (t− c)(2 − t),

where c is some constant within (0, 1). For this g, the problem (6.5) has the
only solution x(t) = (t − c)+(2 − t). The successive approximations xn were
represented in computer memory by the vector of their values at the knots of the
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Figure 1. Complementarity problem

Tchebyshev mesh of 21 points on [0, 1]. Starting from x0(t) :=1− t , x−1(t) :=
0.9x0(t) + 0.001, and

(6.6) (A0h)(t) :=
x0(t)− x−1(t)

f(x0)(t) − f(x−1)(t)
h(t),

the method attains the requested accuracy of approximation (measured by the
max-norm of the function f(x)(t)

)
of 10−12 after 8 iterations. The next table

shows the errors ‖f(xn)(t)‖ versus the iteration number n for c = 0.3. The
figure captioned “Complementarity problem” shows the initial (the solid line)
and the final (the asterisked line) approximations to the solution.

n Error
0 1.00e 0
1 7.00e−1
2 7.00e−1
3 1.37e 0
4 7.62e−2
5 7.63e−2
6 4.80e−12
7 1.28e−12
8 7.32e−13

6.2. A functional equation

We apply here Broyden’s method to the functional equation (5.2) with
ω0(t) :=

√
t. With x0(t) := t, x−1(t) := 0.9x0(t), and A0 as in (6.6), the

max-norm of the function f(x)(t) := x
(
tω0(x(t)

)
− t has been reduced to 10−12

after 40 iterations. The figure captioned “Functional equation” shows the initial
(the solid line) and the final (the dashed line) approximations to the solution.
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Figure 2. Functional equation
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Figure 3. Integral equation

6.3. An integral equation

Pimbley [19] considered the following integral equation arising in a model of
statistical mechanics:

(6.7) f(x)(t) := x(t)− λ

∫ 1

t

x(s− t)x(s) ds− 1 = 0, 0 ≤ t ≤ 1, x ∈ C[0, 1].

He has found that it has two positive decreasing twice differentiable solutions
for each λ ∈ (0, 0.5), one for λ = 0.5, and none for λ > 0.5, and has investigated
their properties. However, he did not try to solve this equation numerically.

We apply the method (1.5) to the equation (6.7) with λ = 0.5 starting from
x0(t) := x−1(t) := 2 − t and A0 := I. The successive approximations xn(t)
were represented by cubic splines created on the Tchebyshev mesh of 16 points
on [0, 1]. The quality of an approximation xn is measured by the max-norm
of the corresponding function (6.7). It is shown in the table below under the
caption Error. The final approximation x15 is tabulated in columns 3 and 4 of
the table. The figure captioned “Integral equation” shows the initial (the solid
line) and the final (the dashed line) approximations.
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Iteration Error t x15(t)
0 1.6597e-1 0.0000e-0 3.0410e+0
1 1.1076e-1 3.1439e-3 3.0329e+0
2 4.6124e-2 2.8058e-2 2.9698e+0
3 2.2092e-2 7.6638e-2 2.8485e+0
4 7.2765e-3 1.4645e-1 2.6781e+0
5 9.3770e-4 2.3398e-1 2.4714e+0
6 6.1311e-5 3.3486e-1 2.2428e+0
7 6.6470e-6 4.4402e-1 2.0071e+0
8 4.8785e-6 5.5598e-1 1.7782e+0
9 3.3993e-6 6.6514e-1 1.5677e+0
10 3.3742e-7 7.6602e-1 1.3843e+0
11 2.3144e-9 8.5355e-1 1.2338e+0
12 1.0981e-9 9.2336e-1 1.1196e+0
13 4.7155e-10 9.7194e-1 1.0431e+0
14 4.7808e-12 9.9686e-1 1.0048e+0
15 3.8636e-14 1.0000e+0 1.0000e+0
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