DOI QR코드

DOI QR Code

헌구두솔버섯균의 균학적 특성 및 목질계 섬유소의 분해 특성 분석

Analysis of Mycological Characteristics and Lignocellulose Degradation of Gyrodontium sacchari

  • 박인철 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 석순자 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 김정선 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 유재홍 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 안재형 (농촌진흥청 국립농업과학원 농업미생물과)
  • Park, In-Cheol (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA) ;
  • Seok, Soon-Ja (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Jeong-Seon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA) ;
  • Yoo, Jae-Hong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA) ;
  • Ahn, Jae-Hyung (Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA)
  • 투고 : 2015.11.18
  • 심사 : 2015.11.24
  • 발행 : 2015.12.31

초록

참나무와 소나무 목재에서 분리한 Gyrodontium sacchari 균주에 대한 균학적 특성과 목질계 섬유소 분해력을 검정하였다. 균주는 참나무와 소나무 목재에서 분리하였으며 배지는 potato dextrose agar (PDA)에서 가장 생장이 좋았고 생장온도는 참나무에서 분리한 NAAS02335 균주는 $25^{\circ}C$에서, 소나무 목재에서 분리한 NAAS05299 균주는 $30^{\circ}C$에서 가장 우수한 생장을 보였다. 섬유소 분해 효소인 cellulase와 xylanase, amylase의 활성은 G. sacchari NAAS05299 균주가 6.7~12.8배 더 높았으며 리그닌 분해 효소는 G. sacchari NAAS02335 균주가 3.7~138.5배 활성이 더 높았으며 목질계 섬유소를 탄소원으로 첨가하였을 때 효소의 활성은 월등히 증가하였다. 목질계 바이오매스 분해력을 검정한 결과 G. sacchari NAAS05299 균주는 filter paper를 4주만에 완전히 분해하였고 볏짚과 미송, 참나무를 분해하였으나 G. sacchari NAAS02335 균주는 볏짚에서만 분해력을 나타내어 G. sacchari NAAS05299 균주가 더 우수한 바이오매스 분해 효과를 나타내었다.

Two fungal strains were isolated from rods of Quercus sp. (NAAS02335) and Pinus densiflora (NAAS05299) in Korea. These strains were identified as Gyrodontium sacchari by their morphological and mycological characteristics. The optimal growth temperature of NAAS02335 and NAAS05299 are $25^{\circ}C$ and $30^{\circ}C$, respectively. Production of cellulase, xylanase, and ligninase was tested on agar media supplemented dyes or substrates. Production of cellulase and xylanase of NAAS05299 was higher than those of NAAS02335, however ligninase activity of NAAS02335 was higher than that of NAAS05299. The activities of cellulase, xylanase, and amylase of strain NAAS05299 were estimated at 6.7~10.2 times higher than that of NAAS02335. Laccase activity was only estimated by strain NAAS02335. The lignocellulytic enzymes are induced by substrates such as rice straw, wooden chips of pine, oak, and poplar. The NAAS05299 was able to degrade filter paper completely after 4 weeks of culturing in liquid media containing a piece of filter paper at $28^{\circ}C$ with continuous shaking. NAAS05299 was able to degrade rice straw, pine chips, and oak chips after 4 months in solid culture, however NAAS02335 decomposed only rice straw among tested 4 kinds of biomass.

키워드

참고문헌

  1. Eggert C, Temp U, Eriksson KE. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 1996;62:1151-8.
  2. Ruiz-Duenas FJ, Martinez AT. Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2009;2:164-77. https://doi.org/10.1111/j.1751-7915.2008.00078.x
  3. Vicuna R, Gonzalez B, Seelenfreund D, Ruttimann C, Salas L. Ability of natural bacterial isolates to metabolize high and low molecular weight lignin-derived molecules. J Biotechnol 1993;30:9-13. https://doi.org/10.1016/0168-1656(93)90022-F
  4. Eriksson KE, Blanchette RA, Ander P. Microbial and enzymatic degradation of wood and wood components. Berlin: Springer-Verlag; 1990.
  5. Kamei I, Takagi K, Kondo R. Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsuta. J Wood Sci 2011;57:317-22. https://doi.org/10.1007/s10086-011-1176-z
  6. Ulcnik A, Kralj Cigiae I, Pohleven F. Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J Microbiol Biotechnol 2013;29:2239-47. https://doi.org/10.1007/s11274-013-1389-y
  7. Maciel GM, Inacio FD, de Sa-Nakanishi AB, Haminiuk CW, Castoldi R, Comar JF, Bracht A, Peralta RM. Response of Ganoderma lucidum and Trametes sp. to the herbicide picloram: tolerance, antioxidants and production of ligninolytic enzymes. Pestic Biochem Physiol 2013;105:84-92. https://doi.org/10.1016/j.pestbp.2012.12.002
  8. Hirai H, Nakanishi S, Nishida T. Oxidative dechlorination of methoxychlor by ligninolytic enzymes from white-rot fungi. Chemosphere 2004;55:641-5. https://doi.org/10.1016/j.chemosphere.2003.11.035
  9. Fragoeiro S, Magan N. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ Microbiol 2005;7:348-55. https://doi.org/10.1111/j.1462-2920.2005.00699.x
  10. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959;31:426-8. https://doi.org/10.1021/ac60147a030
  11. Lim SH, Kim JK, Lee YH, Kang HW. Production of lignocellulytic enzymes from spent mushroom compost of Pleurotus eryngii. Kor J Mycol 2012;40:152-8. https://doi.org/10.4489/KJM.2012.40.3.152
  12. Magalhaes DB, de Carvalho ME, Bon E, Araujo Neto JS, Kling SH. Colorimetric assay for lignin peroxidase activity determination using methylene blue as substrate. Biotechnol Tech 1996;10:273-6. https://doi.org/10.1007/BF00184028
  13. Seok SJ, Lim YW, Kim CM, Ka KH, Lee JS, Han SK, Kim SO, Hur JS, Hyun IH, Hong SG, et al. List of mushrooms in Korea. Seoul: The Korean Society of Mycology; 2013.
  14. Royal Botanic Gardens Kew. Index Fungorum [Internet]. London: Royal Botanic Gardens Kew; 2008 [cited 2015 Nov 1]. Available from: http://www.indexfungorum.org.
  15. Hembrom ME, Parihar A, Das K. Gyrodontium sacchari (Spreng.) Hjortstam: a new record of wood-inhabiting hydnoid fungus from India. J New Biol Rep 2014;3:71-4.
  16. Kim YH, Cho MJ, Shin K, Kim TJ, Kim NH, Kim YS. Enzymatic hydrolysis of rice straw, a lignocellulosic biomass, by extracellular enzymes from Fomitopsis palustris. J Kor Wood Sci Technol 2010;38:262-73. https://doi.org/10.5658/WOOD.2010.38.3.262
  17. Hatakka A. Lignin-modifying enzymes from selected whiterot fungi: production and role in lignin degradation. FEMS Microbiol Rev 1994;13:125-35. https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
  18. Chung CH. Cellulosic ethanol production. Kor J Biotechnol Bioeng 2008;23:1-7.
  19. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 2002;83:1-11. https://doi.org/10.1016/S0960-8524(01)00212-7