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충격성 잡음에 강인한 코 트로피 기반 블라인드 

알고리듬의 성능분석  

김 남 용

Performance Analysis of Correntropy-Based Blind Algorithms 

Robust to Impulsive Noise 

Namyong Kim

요   약

충격성 잡음하의 블라인드 신호처리 분야에서 최  상호 코 트로피 알고리듬 (MCC)이 MSE 기반의 알고리듬

에 비해 우수한 성능을 보인다. 그러나 MCC 알고리듬에 한 최  가 치 조건들이나 충격성 잡음에 한 내성

과 련된 특성들은 아직 충분히 연구되지 못한 상태이다. 이 논문에서는 MSE기반의 LMS 알고리듬과 비교를 통

해 MCC의 최  가 치의 성질을 분석하여   MCC 알고리듬의 최  가 치가 MSE기반의 LMS 알고리듬과 같

다는 보인다. 한 MCC의 최  가 치가 충격성 잡음 하에서도 동요 없이 안정을 유지하는 요인이 입력 크기 조

정에 있다는 것을 시뮬 이션을 통해 입증하 다.                  

Key Words : Cross-correntropy, Random symbols, Impulsive noise, Optimum weight, Magnitude controlled,

Equalizer

ABSTRACT

In blind signal processing in impulsive noise environment the maximum cross-correntropy (MCC) algorithm 

shows superior performance compared to MSE-based algorithms. But optimum weight conditions of MCC 

algorithm and its properties related with robustness to impulsive noise have not been studied sufficiently. In this 

paper, through the analysis of the behavior of its optimum weight and the relationship with the MSE-based LMS 

algorithm, it is shown that the optimum weight of MCC and MSE-based LMS have an equal solution. Also the 

factor that keeps optimum weight of MCC undisturbed and stable under impulsive noise is proven to be the 

magnitude controlled input through simulation.  
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Ⅰ. Introduction

Multipath propagation in wireless channel and 

impulsive noise from a variety of sources affects the 

communication systems adversely
[1,2]. In the 

environment with impulsive noise, many signal 

processing methods based on MSE fail to function 

properly because of large instantaneous errors and 

instability
[3]. 

As an alternative to the MSE criterion, the 

correntropy criterion similar to auto-correlation has 

been introduced
[3]. The cross-correlation (CC) 

concept can be expressed with inner products of two 

different distribution functions constructed by kernel 
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Fig. 1. Base-band communication system and adaptive 
equalizer structure    

density estimation methods with Gaussian kernel 
[3,4]. Through maximization of CC (MCC) with 

steepest descent method and a set of symbol 

samples generated randomly at the receiver, the 

MCC algorithm has been developed for blind 

channel equalization in the environment of impulsive 

noise and multipath distortions
[5].  

One of the drawbacks of MCC algorithm is heavy 

computational complexity related with summation 

operations at each iteration time since gradients are 

calculated based on block processing method. This 

problem of computational complexity has been 

significantly reduced in the work [6] by utilizing 

recursive estimation of the gradient. Though the 

MCC algorithm has been developed to be better 

suited to practical situations and problems, analytic 

research on its optimum solutions and their behavior 

has not been carried out yet deterring further 

enhancement of the algorithm. 

Ⅱ. MSE Criterion and MCC Algorithm 

As depicted in Fig. 1, the baseband model of 

communication system, the transmitted symbol point 

kd  at time k is distorted by the channel’s multipath 

fading and added noise kn . For the multipath 

channel model 
i

i zhzH −∑=)(  in z-transform, the 

equalizer input kx  becomes (1)[7]. 

kikik ndhx += −∑ (1)

With the TDL (tapped delay line) equalizer 

structure, the input vector 
T

Lkjkkkk xxxx ],...,,...,,[ 11 +−−−=X  and weight vector 

T
kLkjkkk wwww ],...,,..,,[ ,1,,1,0 −=W , the output is expressed 

as k
T
kky WX=  and the error ke  is 

k
T
kkkkk dyde WX−=−= (2)

Then the MSE criterion MSEP  is defined as a 

statistical average ][⋅E  of squared error 
2
ke .

][ 2
kMSE eEP =

][2][][ 2
kk

T
kkk

T
k

T
kk dEEdE XWWXXW −+= (3)

Letting the gradient W∂
∂ MSEP

 be zero, the optimum 

weight vector 
o
MSEW  for MSE criterion can be 

obtained
[8]. 

][
][
k

T
k

kko
MSE E

dE
XX
XW = (4)

Inserting this optimum weight 
o
MSEW  in the 

correlation ][ kkeE X  leads to

0][][][ =−= k
T
kkkkkk EdEeE XXWXX (5)

As a typical algorithm based on the MSE 

criterion, LMS (least mean square) is to use the 

instant error power 
2
ke  instead of ][ 2

keE  for 

practical reasons[7]. Then the gradient of LMS 

becomes  

WW ∂
−∂

=
∂
∂ )(2

2
kk

k
k ydee

kk
T
kkkk de XWXX )(22 −−=−= (6)
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And 

W
WW

∂
∂
⋅−=+

2

1
k

kk
eμ kkk e XW ⋅+= μ2 (7)

The optimum weight vector of LMS algorithm 

o
LMSW  can be obtained as below by letting the 

gradient W∂
∂ 2

ke
 in (6) be zero. 

k
T
k

kko
LMS

d
XX
XW = (8)

And 

o
MSE

k
T
k

kko
LMS E

dEE W
XX
XW ==

][
][][ (9)

While taking the averaging operation ][⋅E  to (8) 

can mitigate the influence of the Gaussian noise on 

the steady state weights, non-Gaussian noise such as 

impulsive noise may defeat the averaging operation 

because even an impulse can dominate the mean 

operation. Therefore algorithms based on the MSE 

criterion can become unstable under impulsive noise 

environment.

Among blind algorithms known for its robustness 

against impulsive noise, a blind algorithm based on 

MCC criterion and a random symbol set has been 

developed for impulsive noise environment
[7]. We 

assume that M  symbol points are equally likely to 

be transmitted a priori with a probability M
1

, and 

the transmitted symbol points mA  are  

MmAm −−= 12 , Mm ,...,2,1= . Since 

modulation schemes are normally known to 

receivers, the receiver generates a set of random 

symbol samples 
T

NN ddd ],...,,[ 21=D  in order for 

the MCC method to have the same distribution as 

the transmitted symbol points { }mA [5]. For that 

purpose, the number of random symbol samples 

corresponding to each symbol point mA  is 

MN /  . Then the probability density can be 

constructed based on Kernel density estimation[9].  

∑
=

−−
=

N

i

i
D

dd
N

df
1

2

2

]
2

)(exp[
2

11)(
σπσ

(10) 

  

The cross-correntropy concept can be expressed 

with inner products of two different probability 

density functions constructed by Gaussian-kernel 

density estimation methods
[4]. Then the 

cross-correntropy criterion with the output 

distribution )(yfY  and )(dfD  in (10) is 

∫ ααα dff YD )()(

∑ ∑
+−= =

−−
=

k

Nki

N

j

ij yd
N 1 1

2

2

2 ]
4

)(
exp[

22
11

σπσ
(11)

 

For maximization of the cross-correntropy 

(MCC), the gradient can be utilized.  

W∂
∂∫ ααα dff yd )()(

 

∑∑
+−= =

⋅
−−

⋅−=
k

Nki
i

N

j

ij
ij

yd
yd

N ,1 1
2

2

32
]

4
)(

exp[)(
2

1 X
σπσ

(12)

 

With the gradient (12), the MCC algorithm is 

expressed as 

W
WW

∂

∂
+= ∫

+

ααα
μ

dff yd
kk

)()(
1

(13)

Ⅲ. Weight Behavior of MCC Algorithm 

The term 
∑

+−=

⋅
k

NkiN 1
)(1

 in (12) can be considered as 

a sample-averaged version of ][⋅E  so that the 

optimum condition 
0

)()(
=

∂

∂∫
W

ααα dff yd

 leads to 
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Fig. 2. Symbol space and error samples for 16=N  and 
4=M . Fig. 3. Input magnitude controller 

0])
4

)(
exp()([

1
2

2

=
−−

⋅−∑
=

k

N

j

kj
kj

yd
ydE X

σ
(14)

 

In (14), the term kj yd −  means how far the 

current output ky is from each symbol sample 

jd . Since M
N

 samples of jd  are located in each 

transmitted symbol point mA  as depicted in Fig. 2, 

the term kj yd −  corresponds to the distance 

between the current ky  and symbol points 

( MAA ,...,1 ). From this perspective, we may define 

the difference kj yd −  as an error kje ,  for each 

symbol sample jd . For convenience sake, this error 

kje ,  will be referred to as symbol sample    

(SS) error. N  SS errors are produced from the 

symbol space at each iteration time as in Fig. 2 for 

a simple case of 4=M and 16=N . Then, (14) 

can be written as  

0])
4

exp([
1

2

2
,

, =
−

⋅∑
=

k

N

j

kj
kj

e
eE X

σ
(15)

 

The term k
kje X)

4
exp( 2

2
,

σ
−

, that is, kX  multiplied 

by 
)

4
exp( 2

2
,

σ
kje−

 can be considered as a magnitude 

controlled value of kX  according to error values. 

For example, when SS error kje ,  has a very large 

value due to some strong noise like impulses, the 

exponential 
)

4
exp( 2

2
,

σ
kje−

 becomes very small (the 

exponential function is a decay function of SS error 

power) and the current input kX  is mitigated by the 

multiplication of 
)

4
exp( 2

2
,

σ
kje−

. This process of input 

magnitude control is depicted in Fig. 3, defining 

MC
kj ,X  as a magnitude controlled input.

k
kjMC

kj

e
XX )

4
exp( 2

2
,

, σ
−

= (16)

 

With the definition 
MC
kj ,X  and (12), the MCC 

algorithm can be rewritten as         

∑ ∑
+−= =

+ ⋅+=
k

Nki

N

j

MC
ijijkk e

N ,1 1
,,321 2

XWW
πσ

μ
(17)

It is noticed in (17) that the magnitude controlled 

MC
kj ,X  plays the role in stabilizing the algorithm in 

situations of large error occurrence when compared 

with the LMS algorithm in (7) though the two 

algorithms have a very similar form that comprises 

error and input.   
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Fig. 4. Exponential function and error samples gathered 
around zero. 

The steady state condition (15) becomes  

0][
1

,, =⋅∑
=

N

j

MC
kjkjeE X (18)

It is also observable when we compare (5) with 

(18) the optimum condition of MCC is very similar 

to MSE criterion except the summation process over 

symbol samples and the magnitude controlled input 

MC
kj ,X . 

From (12), the optimum condition becomes 

0)(
,1 1

, =⋅−∑ ∑
+−= =

k

Nki

N

j

MC
ij

oT
ijd XWX (19)

∑ ∑∑ ∑
+−= =+−= =

⋅=⋅
k

Nki

N

j
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i

k

Nki

N

j
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ijjd

,1 1
,

,1 1
, XWXX (20)

The optimum weight for MCC algorithm is 

∑ ∑

∑ ∑

+−= =

+−= =

⋅

⋅
= k

Nki

N

j

MC
ij

T
i

k

Nki

N

j
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o

d

,1 1
,

,1 1
,

XX

X
W (21)

   

In the steady state, we may assume that most of 

the error samples are located at around zero as 

depicted in Fig. 4. 

This assumption leads us to treat 
)

4
exp( 2

2
,

σ
kje−

 as 

a constant.  That is, in the steady state,

1)
4

exp(lim 2

2
, =

−
→∞ σ

kj

k

e
(22)

k
MC
kjk
XX =

→∞ ,lim (23)

 

Using (22) and (23), we may rewrite the expected 

value of optimum weight ][ oE W  for (21) as 

∑ ∑

∑ ∑
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The equation (24) indicates 

o
MSE

o
LMS

o EE WWW == ][][ (25) 

  

From the perspective of large error situation such 

as due to impulsive noise, the equation (21) gives 

another important property that the magnitude 

controlled 
MC
kj ,X  both in the nominator and 

denominator cuts outliers that are abnormally large 

input contaminated with large noise. This in turn 

makes 
oW  remain stable without wild fluctuation in 

the steady state. Compared to the optimum weight 

of MCC, the one of LMS algorithm (8) has no 

protection measures against damage from large 

errors or impulsive noise. Assuming optimum 

condition that most error samples are located at 

around zero in the steady state, this property will be 

discussed through observations of the behavior of 

steady state weight (21) and (8) under impulsive 

noise situations in the following section.         

Ⅳ. Results and Discussion

In this section, For the observation of the 

behavior of the steady state weights (21) and (8) 
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Fig. 6. Trace of weight values in the steady state with 

impulsive noise for kw ,5 , kw ,6  and kw ,7 (the other weights 
are not included just for the page-limit); (a) is for channel 

)(1 zH  and (b) is for )(2 zH .

Fig. 5. Background and impulsive noise. 

under impulsive noise situations, the channel 

environment of [7] with the impulse noise being 

applied in the steady state is used in this paper as 

depicted in Fig. 5. The symbol point set in the 

transmitter is { }3,1,1,3 4321 ==−=−= dddd  

and a symbol point kd  is transmitted at time k 

through the channel models as

21
1 26.093.026.0)( −− ++= zzzH (26)

21
2 304.0903.0304.0)( −− ++= zzzH (27)

The additive Gaussian white noise (AWGN) is 

added to the channel output throughout the whole 

time as a background noise. The impulse noise is 

added after convergence (8000) as in Fig. 5. The 

impulsive noise kn is generated according to the 

following PDF of Gaussian mixture model
[3].

]
2

exp[
2

]
2

exp[
2

1)( 2
2

2

2
2
1

2

1 σπσ
ε

σπσ
ε kk

kNOISE
nnnf −

+
−−

= (28) 

where 1<ε , GNσσ =1 , 
22

2 INGN σσσ +=  

The variance 
2
INσ  and incident rate ε  of the 

impulse in this section are given by 50 and 0.01, 

respectively. The TDL equalizer has 11 weights. The 

number of random symbol samples N  is 32, the 
kernel size σ  is 0.5.  

The convergence step-sizes are 007.0=MCCμ  for 

MCC1 and 001.0=LMSμ  for LMS algorithm. All 

the parameters are selected to have the lowest steady 

state MSE in this simulation. 

The trace of kw ,5 , kw ,6  and kw ,7  (the other tap 

weights are not included just for the page-limit) in 

Fig. 6. The dotted line is the trace of the LMS 

algorithm and the solid line is the one of MCC1.  

Since the steady state weight vectors can be 

considered to be reached the optimum state, it is 

reasonable to investigate whether the steady state 

weights satisfy the relation in (25) and the steady 

state weight can keep the optimum values under 

impulsive noise situations. The first thing we can 

observe in Fig. 6 is that both algorithms have the 
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same steady state weight values as explained in (25). 

Secondly, the weight traces of MCC1, each weight 

presents no fluctuations staying undisturbed under 

the strong impulses while the ones of LMS 

algorithm for all kw ,5 , kw ,6  and kw ,7  show sharp 

perturbations at each impulse occurrence. 

Comparison of (7) and (17) shows that the mainly 

different terms between the two weight update 

equations are sample averaging and magnitude 

controlling processes. Since impulsive noise may 

defeat the averaging operation as mentioned in 

Section 2, we can explain that the dominant role in 

the robustness against impulsive noise is the 

magnitude controlled input k
kjMC

kj

e
XX )

4
exp( 2

2
,

, σ
−

=

and therefore the steady state weights of LMS 

algorithm without the input controlling function 

cannot avoid wild fluctuations in impulsive noise 

environment.

Ⅴ. Conclusion 

In most blind signal processing applications in 

impulsive noise environment the MCC algorithm 

outperforms MSE-based algorithms. However, the 

optimum solutions and properties related with MCC 

algorithms have not been sufficiently studied. In this 

paper, through analysis of the relationship with the 

behavior of optimum weight of MSE-based LMS 

algorithm, it has been proven that the optimum 

weight of MCC is equal to the one of MSE 

criterion. Furthermore, it is the magnitude controlled 

input that keeps optimum weight of MCC 

undisturbed and stable by mitigating the influence of 

impulsive noise. Studies on application of the 

magnitude controlled input to enhanced methods are 

desirable in future research.          
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