DOI QR코드

DOI QR Code

Lithofacies and Stable Carbon Isotope Stratigraphy of the Cambrian Sesong Formation in the Taebaeksan Basin, Korea

태백산 분지 캄브리아기 세송층의 암상과 안정 탄소 동위원소 층서

  • Lim, Jong Nam (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Chung, Gong Soo (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Park, Tae-Yoon S. (Division of Earth-System Sciences, Korea Polar Research Institute) ;
  • Lee, Kwang Sik (Korea Basic Science Institute)
  • 임종남 (충남대학교 지질환경과학과) ;
  • 정공수 (충남대학교 지질환경과학과) ;
  • 박태윤 (극지연구소 극지지구시스템연구부) ;
  • 이광식 (한국기초과학지원연구원)
  • Received : 2015.11.12
  • Accepted : 2015.12.27
  • Published : 2015.12.31

Abstract

The Sesong Formation, mixed carbonate-siliciclastic deposits of late Middle Cambrian (Series 3) to Furongian in age, in the Taebaeksan Basin shows the Steptoean Positive Carbon Isotope Excursion (SPICE) with the ${\delta}^{13}C$ values ranging from 1.14 to 2.81‰ in the approximately 15-m-thick stratigraphic interval. The SPICE in the Sesong Formation occurs in the lower part of the Paibian Stage which contains trilobite biozones of the Fenghuangella laevis Zone, Prochuangia mansuyi Zone and the lower part of the Chuangia Zone. The Sesong Formation is composed of six lithofacies including laminated mudstone, nodular shale, laminated sandstone, massive sandstone, limestone conglomerate, and limestone-shale couplet facies. The Sesong Formation is known to have been deposited in the outer shelf below storm wave base. The SPICE occurs in the stratigraphic interval associated with highstand systems tract, correlative conformity and transgressive systems tract of the Sesong Formation. The peak carbon isotope value in the SPICE may coincide with the correlative conformity formed by relative sea-level fall. The occurrence of the SPICE in the Sesong Formation suggests that the SPICE can be used as a tool of global correlation for the successions of mixed carbonate-siliciclastics which lack fossils.

태백산 분지에 분포하는 탄산염 및 규질쇄설성 혼합 퇴적물로 구성된 세송층(late Middle Cambrian to Furongian)은 ${\delta}^{13}C$값이 1.14에서 2.81‰을 갖는 SPICE (Steptoean positive carbon excursion)를 15 m 두께의 층서구간에서 보여준다. SPICE는 Fenghuangella laevis대, Prochuangia mansuyi대 그리고 Chuangia대로 구성된 삼엽충 생물대에서 산출되며 이는 Paibian Stage의 하부에 해당된다. 세송층은 엽층리 이암, 단괴상 셰일, 엽층리 사암, 균질사암, 석회역암, 석회암-셰일 쌍을 포함한 6개의 암상으로 구성된다. 세송층은 폭풍파도기저면 아래의 외대륙붕에서 퇴적된 것으로 알려져 있다. 시기적으로 Paibian Stage에 속하는 SPICE는 세송층에서 고수위 퇴적계 다발, 대비 정합면과 해침퇴적계 다발에서 발견된다. SPICE의 최대 안정 탄소 동위원소 값은 상대적인 해수면 하강에 의해 형성된 대비 정합면과 일치한다. 세송층에서 SPICE의 산출은 SPICE가 화석의 산출이 결여된 지층의 전세계적 대비를 위해 사용될 수 있는 도구임을 암시한다.

Keywords

References

  1. Ahlberg, P., Axheimer, N., Babcock, L.E., Eriksson, M.e., Schmitz, B., and Terfelt, F., 2009, Cambrian high-resolution biostratigraphy and carbon isotope chemostratigraphy in Scania, Sweden: first record of the SPICE and DICE excursions in Scandinavia. Lethaia, 42, 2-16. https://doi.org/10.1111/j.1502-3931.2008.00127.x
  2. Alvaro, J.J., Bauluz, B., Subias, I., Pierre, C., and Vizcaino, D., 2008, Carbon chemostratigraphy of the Cambrian-Ordovician transitioin in a midlatitude mixed platform, Montagne Noire, France. Geological Society of America Bulletin, 120, 962-975. https://doi.org/10.1130/B26243.1
  3. Banerjee, S., Jeevankumar, S., Sanyal, P., and Bhattacharyya, S.K., 2006, Stable isotope ratios and nodular limestone of the Proterozoic Rhotas Limestone: Vindhyan Basin, India. Carbonates and Evaporites, 21, 133-143. https://doi.org/10.1007/BF03175663
  4. Chen, J., Chough, S.K., Chun, S.S., and Han, Z., 2009, Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong Province, China): soft-sediment deformation induced by storm-wave loading. Sedimentology, 56, 1174-1195. https://doi.org/10.1111/j.1365-3091.2008.01028.x
  5. Chen, J., Chough, S.K., Han, Z., and Lee, J.-H., 2011, An extensive erosion surface of strongly deformed limestone bed in the Gushan and Chaomidian formations (late Middle Cambrian to Furongian), Shandong Province, China: Sequence-stratigraphic implications. Sedimentary Geology, 233, 129-149. https://doi.org/10.1016/j.sedgeo.2010.11.002
  6. Chen J., Chough, S.K., Lee, J.-H., and Han, Z., 2012, Sequence-stratigraphic comparison of the upper Cambrian Series 3 to Furongian succession between the Shandong regioin, China and the Taebaek area, Korea: high variability of bounding surfaces in an epeiric platform. Geosciences Journal, 16, 357-379. https://doi.org/10.1007/s12303-012-0040-5
  7. Chung, G.S., Lee, J.G., and Lee, K.S., 2011, Stable carbon isotope stratigraphy of the Cambrian Machari Formation in the Yeongweol Area, Gangweon Province, Korea. Journal of the Korean Earth Science Society, 32, 437-452. https://doi.org/10.5467/JKESS.2011.32.5.437
  8. Elliott, G.M., Jackson, C.A.L., Gawthorpe, R.L., Wilson, P., Sharp, I.R., and Michelsen, L., 2015, Late syn-rift tectono-stratigraphic evolution of Vingleia Fault Complex, Halten Terrace, offshore Mid-Norway; a test of rift-basin tectono-stratigraphic models. Basin Research, DOI: 10.1111/bre.12158.
  9. Elrick, M., Read, J.F., and Coruh, C., 1991, Short-term paleoclimatic fluctuations expresses in lower Mississippian ramp-slope deposits, southwestern Montana. Geology, 19, 799-802. https://doi.org/10.1130/0091-7613(1991)019<0799:STPFEI>2.3.CO;2
  10. Elrick, M., Rieboldt, S., Saltzman, M., and McKay, R.M., 2011, Oxygen-isotope trends and seawater temperature changes across the Late Cambrian Steptoean positive carbon-isotope excursion (SPICE event). Geology, 39, 987-990. https://doi.org/10.1130/G32109.1
  11. Flugel, E., 2004, Microfacies of carbonate rocks. Springer-Verlag, Berlin, , Germany. 976 p.
  12. Gill, B.C., Lyons, T.W., and Saltzman, M., 2007, Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeography, Palaeoclimatology, Palaeoecology, 256, 156-173. https://doi.org/10.1016/j.palaeo.2007.02.030
  13. Gill, B.C., Lyons, T.W., Young, S.A., Kump, L.R., Knoll, A.H., and Saltzman, M.R., 2011, Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469, 80-83. https://doi.org/10.1038/nature09700
  14. Glumac, B. and Mutti, L.E., 2007, Late Cambrian (Steptoean) sedimentation and responses to sea-level change along the northeastern Laurentian margin: Insight from carbon isotope stratigraphy. Geological Society of America Bulletin, 119, 623-636. https://doi.org/10.1130/B25897.1
  15. Glumac, B., 2011, High-resolution stratigraphy and correlation of Cambrian strata using carbon isotopes: an example from the southern Appalachian, USA. Carbonates Evaporites, 26, 287-297. https://doi.org/10.1007/s13146-011-0065-2
  16. Kouchinsky, A., Bengstone, S., Gallet, Y., Korovnikov, I., Pavlov, V., Runnergar, B., Shields, G., Veizer, J., Young, E., and Ziegler, K., 2008, The SPICE carbon isotope excursion in Siberia: a combined study of the upper Middle Cambrian-lowermost Ordovician Kulyumbe River section, norothwestern Siberian Platform. Geological Magazine, 145, 609-622.
  17. Kump, L.R. and Arthur, M.A., 1999, Interpreting carbon-isotope excursions: carbonates and organic matter. Chemical Geology, 161, 181-198. https://doi.org/10.1016/S0009-2541(99)00086-8
  18. Kwon, Y.K., Chough, S.K., Choi, D.K., and Lee, D.J., 2006, Sequence stratigraphy of the Taebaek Group (Cambrian-Ordovician), mideast Korea. Sedimentary Geology, 192, 19-55. https://doi.org/10.1016/j.sedgeo.2006.03.024
  19. Lee. J.-H., Chen, J., and Chough, S.K., 2015, The middle-late Cambrian reef transition and related geological events: A review and new view. Earth-Science Reviews, 145, 66-84. https://doi.org/10.1016/j.earscirev.2015.03.002
  20. Lindsay, J.F., Kruse, P.D., Green, O.R., Hawkins, E., Brasier, M.D., Cartlidge, J., and Corfield, R.M., 2005, The Neoproterozoic-Cambrian record in Australia: A stable isotope study. Precambriann Research, 143, 113-133. https://doi.org/10.1016/j.precamres.2005.10.002
  21. Myrow, P.M., Tice, L., Archuleta, B., Clark, B., Taylor, J.F., and Ripperdan, R.L., 2004, Flat-pebble conglomerate: its multiple origins and relationship to metre-scale depositional cycles. Sedimentology, 51, 973-996. https://doi.org/10.1111/j.1365-3091.2004.00657.x
  22. Nichols, G., 2009, Sedimentology and stratigraphy. Wiley-Blackwell, Chichester, UK, 419 p.
  23. Park, T.-Y. and Choi, D.K., 2011, Trilobite faunal successions across the base of the Furongian Series in the Taebaek Group, Taebaeksan Basin, Korea. Geobios, 44, 481-498. https://doi.org/10.1016/j.geobios.2011.02.003
  24. Park, T.-Y., Sohn, J.W., and Choi, D.K., 2012, Middle Furongian (late Cambrian) polymerid trilobites from the upper part of the Sesong Formation, Taebaeksan Basin, Korea. Geosciences Journal, 16, 381-398. https://doi.org/10.1007/s12303-012-0037-0
  25. Peng, S., Babcock, L.E., Robinson, R.A., Lin, H., Rees, M.N., and Saltzman, M.R., 2004, Global standard stratotype-section and point (GSSP) of the Furongian Series and Paibian Stage (Cambrian). Lethaia, 37, 365-379. https://doi.org/10.1080/00241160410002081
  26. Peng, S., Babcock, L.E., and Cooper R.A., 2012, The Cambrian period. In Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M. (eds.), The geologic time scale 2012, volume 2. Elsevier, Amsterdam, Netherlands, 437-488.
  27. Saltzman, M.R., Runnergar, B. and Lohmann, K.C., 1998, Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: Record of a global oceanographic event. Geological Society of America Bulletin, 110, 285-297. https://doi.org/10.1130/0016-7606(1998)110<0285:CISOUC>2.3.CO;2
  28. Saltzman, M.R., Ripperdan, R.L., Brasier, M.D., Lohmann, K.C., Robison, R.A., Chang, W.T., Peng, S. Ergaliev, E.K., and Runnegar, B., 2000, A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeography, Palaeoclimatology, Palaeoecology, 162, 211-223. https://doi.org/10.1016/S0031-0182(00)00128-0
  29. Saltzman, M.R., Cowan, C.A., Runkel, A.C., Runnegar, B., Stewart, M.C., Palmer, A.R. 2004, The Late Cambrian SPICE (${\delta}^{13}C$) event and the SAUK II-SAUK III regression: new evidence from Laurentian basins in Utah, and Newfoundland. Jouranl of Sedimentary Research, 74, 366-377. https://doi.org/10.1306/120203740366
  30. Saltzman, M.R. and Thomas, E., 2012, Carbon isotope stratigraphy. In Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M. (eds.), The geologic time scale 2012, volume 1. Elsevier, Amsterdam, Netherlands, 207-232.
  31. Sial, A.N., Peralta, S., Ferreira, V.P., Toselli, A.J., Acenolaza, F.G., Parada, M.A., Gaucher, C., Alonso, R.N., and Pimentel, M.M., 2008, Upper Cambrian carbonate sequences of the Argentine Precordillera and the Steptoean C-Isotope positive excursion (SPICE). Gondwana Research, 13, 437-452. https://doi.org/10.1016/j.gr.2007.05.001
  32. Sial, A.N., Peralta, S., Gaucher, C., Toselli, A.J., Ferreira, V.P., Frei, R., Parada, M.A., Pimentel, M.M., and Pereira, N.S., 2013, High-resolution stable isotope stratigraphy of the upper Cambrian and Ordovician in the Argentine Precordillera: Carbon isotope excursions and correlationas. Gondwana Research, 24, 330-348. https://doi.org/10.1016/j.gr.2012.10.014
  33. Sim, M.S. and Lee, Y.I., 2006, Sequence stratigraphy of the Middle Cambrian Daegi Formation (Korea), and its bearing on the regional stratigraphic correlation. Sedimentary Geology, 191, 151-169. https://doi.org/10.1016/j.sedgeo.2006.03.016
  34. Sohn, J.W. and Choi, D.K., 2005, Revision of the Upper Cambrian trilobite biostratigraphy of the Sesong and Hwajeol Formations, Taebaek Group, Korea. Journal of Paleontological Society of Korea, 21, 195-200 (Korean with English Abstract).
  35. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korete, C., Pawellek, F., Podlaha, O.G., and Strauss, J., 1999, $^{87}Sr/^{86}Sr$, ${\delta}^{13}C$ and ${\delta}^{18}O$ evolution of Phanerozoic seawater. Chemical Geology, 161, 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
  36. Zhu, M.Y, Zhang, J.M., Li, G.X, and Yang, A.H., 2004, Evolution of C isotopes in the Cambrian of China: implications for Cambrian subdivision and trilobite mass extinctions. Geobios, 37, 287-301. https://doi.org/10.1016/j.geobios.2003.06.001

Cited by

  1. event in eastern North America pp.1472-4669, 2019, https://doi.org/10.1111/gbi.12334