DOI QR코드

DOI QR Code

라다클로린으로 매개된 광역학치료에 의한 백색 캔디다 바이오필름의 비활성

Inactivation of Candida albicans Biofilm by Radachlorin-Mediated Photodynamic Therapy

  • 권필승 (원광보건대학교 임상병리과)
  • Kwon, Pil Seung (Department of Clinical Laboratory Science, Wonkwang Health Science University)
  • 투고 : 2015.10.19
  • 심사 : 2015.11.04
  • 발행 : 2015.12.30

초록

이 연구의 목적은 임상 Candida albicans의 바이오필름억제을 위한 Rhadachlorin과 적색발광다이오드를 이용한 광역학치료의 체외적 효과를 평가하고자 하였다. Candida albicans 부유액을 $9{\times}10^8CFU/mL$을 5% 당이 함유된 YNB배지에 준비하였다. Candida albicans의 바이오필름은 96웰 플레이트에 100 uL씩 분주후 3시간 배양하고 상층액을 제거하였다. 각 웰에 $50{\mu}g/mL$ 부터 $0.39{\mu}g/mL$ 농도로 Rhadachlorin을 부착된 세포위에 처리하였다. 30분간 배양 후 빛을 30, 60, 90분을 630 nm 광원의 LED를 이용하여 조사하였고, 이때 각각의 에너지밀도는 14, 29, $43J/cm^2$이였다. 모든 상층액을 제거후에 건조시켰다. 부착된 세포를 safranin O로 염색하였다. 490 nm 파장으로 마이크로플레이트 리더로 흡광도를 측정하였다. 또한, 광감작제포화에 의해 Candida albicans의 형광시그널을 관찰하였다. 결론적으로 확연한 억제는 Rhadachlorin의 농도 $50{\mu}g/mL$과 630 nm LED치료에서 Candida albicans의 바이오필름의 72.5%가 감소되었다. 또한 광감작제 Rhadachlorin은 Candida albicans의 30분에서 충분한 축적을 보였다. 전체적으로 이 결과들은 바이오필름형성의 억제는 Rhadachlorin의 농도에 의존되었다. 이 결과들은 Rhadachlorin과 630 nm LED의 광역학치료는 Candida albicans의 바이오필름 억제가 가능한 것으로 제의된다.

The purpose of this study was to evaluate the in-vitro efficacy of PDT using red light emitting diode (LED) with Radachlorin for biofilm inhibition of clinical Candida albicans isolates. The suspensions containing C. albicans at $9{\times}10^8CFU/mL$ were prepared on yeast nitrogen base containing 5% glucose. The biofilm formation was grown for 3 h after seeding suspensions each 100 ul on a 96-well plate and then supernatant was discarded. Each well was treated with $0.39{\mu}g/mL$ from $50{\mu}g/mL$ concentrations of Radachlorin on adherent biofilm. After a 30-minute incubation, light was irradiated for 30, 60, or 90 minutes using the following light source of wavelength 630 nm LED, at energy densities of 14, 29, and $43J/cm^2$. Afterwards, all supernatant was removed and dried. Adherent cells were stained with safranin O and dried. The cell viability was measured using a microplate reader at 490 nm. Also, a fluorescent signal on C. albicans was observed by saturation of a photosensitizer. In conclusion, a significant inhibition of 72.5% was observed to C. albicans on biofilm at the Radachlorin dose of $50{\mu}g/mL$ with 630 nm LED. The Photosensitizer (Radachlorin) was adequate at 30 minuttes for C. albicans. Overall, the results showed that inhibition of biofilm formation was Radachlorine dose-dependent. The results suggest that PDT, using Radachlorin with 630 nm LED, is able to decrease biofilm formation of C. albicans.

키워드

참고문헌

  1. Blankenship JR, Mitchell AP. How to build a biofilm: a fungal perspective. Curr. Opin. Microbiol. 2006, 9:588-594. https://doi.org/10.1016/j.mib.2006.10.003
  2. Dai T, Bil de Arce VJ, Tegos GP, Hamblin MR. Blue dye and red light, a dynamic combination for prophylaxis and treatment of cutaneous Candida albicans infections in mice. Antimicrob Agents Chemother. 2011, 55:5710-5717. https://doi.org/10.1128/AAC.05404-11
  3. Demidova TN, Hamblin MR. Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother. 2005, 49:2329-2335. https://doi.org/10.1128/AAC.49.6.2329-2335.2005
  4. Douglas LJ. Medical importance of biofilms in Candida infections. Rev Iberoam Micol. 2002, 19:139-143
  5. Dovigo LN, Pavarina AC, Ribeiro DG, Adriano CS, Bagnato VS. Photodynamic inactivation of four Candida species induced by photogem. Braz J Microbiol. 2010, 41:42-49. https://doi.org/10.1590/S1517-83822010000100009
  6. Giroldo LM, Felipe MP, de Oliveira MA, Munin E, Alves LP, Costa MS. Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci. 2009, 24:109-112.
  7. Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994, 62:915-921.
  8. Heilmann C, Gerke C, Perdreau-Remington F, Gotz F. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun. 1996, 64:277-82.
  9. Hong SN, Kwon PS, Kim DS. Photodynamic inactivation of Moraxella catarrhalis. Korean J Clin Lab Sci. 2007, 39:19-24.
  10. Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003, 57:395-418. https://doi.org/10.1146/annurev.micro.57.030502.090938
  11. Junqueira JC, Jorge AO, Barbosa JO, Rossoni RD, Vilela SF, Costa AC, et al. Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H, 31H-phthalocyanine (ZnPc). Lasers Med Sci. 2012, 27:1205-1212. https://doi.org/10.1007/s10103-012-1050-2
  12. Kwon PS. The effects of photodynamic therapy for vancomycin resistant enterococci. Korean J Clin Lab Sci. 2011, 43:124-132.
  13. Kwon PS. Antimicrobial effects of photodynamic therapy using blue light emitting diode with photofrin and radachlorine against Propionibacterium acnes. Korean J Clin Lab Sci. 2015, 47:6-10. https://doi.org/10.15324/kjcls.2015.47.1.6
  14. Lam M, Jou PC, Lattif AA, Lee Y, Malbasa CL, Mukherjee PK, et al. Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans. Photochem Photobiol. 2011, 87:904-909. https://doi.org/10.1111/j.1751-1097.2011.00938.x
  15. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013, 4:119-128. https://doi.org/10.4161/viru.22913
  16. Morgan J, Meltzer MI, Plikaytis BD, Sofair AN, Huie-White S, Wilcox S, et al. Excess mortality, hospital stay, and cost due to candidemia: a case-control study using data from population- based candidemia surveillance. Infect Control Hosp Epidemiol. 2005, 26:540-547. https://doi.org/10.1086/502581
  17. Odds FC, Gow NA, Brown AJ. Fungal virulence studies come of age. Genome Biol. 2001, 2:reviews1009.1-reviews1009.4.
  18. Oliver BG, Silver PM, Marie C, Hoot SJ, Leyde SE, White TC. Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiology. 2008, 154:960-970. https://doi.org/10.1099/mic.0.2007/013805-0
  19. Prates RA, Kato IT, Ribeiro MS, Tegos GP, Hamblin MR. Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. J Antimicrob Chemother. 2011, 66:1525-1532. https://doi.org/10.1093/jac/dkr160
  20. Ramage G, Martinez JP, Lipez-Ribot JL. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res. 2006, 6:979-986. https://doi.org/10.1111/j.1567-1364.2006.00117.x
  21. Ramage G, Vandewalle K, Wickes BL, Lopez-Ribot JL. Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol. 2001;18:163-70.
  22. Rosseti IS, Chagas LR, Costa MS. Photodynamic antimicrobial chemotherapy (PACT) inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. Laser Med Sci. 2014, 29:1059-1064 https://doi.org/10.1007/s10103-013-1473-4
  23. Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev. 2011, 75:213-267. https://doi.org/10.1128/MMBR.00045-10
  24. Thompson DS, Carlisle PL, Kadosh D. 2011. Coevolution of morphology and virulence in Candida species. Eukaryot. Cell. 2011, 10:1173-1182. https://doi.org/10.1128/EC.05085-11
  25. Vera DM, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, et al. Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol. 2012, 88:499-511. https://doi.org/10.1111/j.1751-1097.2012.01087.x