DOI QR코드

DOI QR Code

Evaluation of Pyrosequencing Method for a BRAFV600E Mutation Test

  • Oh, Seo Young (Department of Pathology, Konkuk University Medical Center) ;
  • Lee, Hoon Taek (Department of Animal Biotechnology, College of Animal Bioscience & Technology Konkuk University)
  • Received : 2015.02.27
  • Accepted : 2015.03.18
  • Published : 2015.03.30

Abstract

A fine needle aspiration biopsy (FNAB) is the primary means of distinguishing benign from malignant in thyroid nodules. However, between 10 and 30% of the FNABs of thyroid nodules are diagnosed as 'indeterminate'. A molecular method is needed to reduce unnecessary surgery in this group. In Korea, most thyroid cancer is classic papillary type and BRAFV600E mutation is highly prevalent. Thus, this study compared the pyrosequencing method with the conventional direct DNA sequencing and PCR-RFLP analysis and investigated the evaluation of preoperative BRAFV600E mutation analysis as an adjunct diagnostic method with routine FNABs. Sixty-five (78.3%) of 83 histopathologically diagnosed malignant nodule revealed positive BRAFV600E mutation on pyrosequencing analysis. In detail, 65 (83.8%) of 78 papillary thyroid carcinomas sample showed positive BRAFV600E mutation. None of 29 benign nodules had in pyrodequencing, direct DNA sequencing and PCR-RFLP. Out of 31 thyroid nodules classified as 'indeterminate' on cytological examination preoperatively, 28 cases turned out to be malignant: 24 papillary thyroid carcinomas. Among that, 16 (66.7%) classic papillary thyroid carcinomas had BRAFV600E mutation. Among 65 papillary thyroid carcinomas with positive BRAFV600E mutation detected by pyrosequencing analysis, each 3 cases and 5 cases did not show BRAFV600E mutation by direct DNA sequencing and PCR-RFLP analysis. Therefore, pyrosequencing was superior to direct DNA sequencing and PCR-RFLP in detecting the BRAFV600E mutation of thyroid nodules (p =0.027). Detecting BRAFV600E mutation by pyrosequencing was more sensitivity, faster than direct DNA sequencing or PCR-RFLP.

Keywords

References

  1. Agaton C, Unneberg P, Sievertzon M, Holmberg Aehn M, Larsson M, Odeberg J, Uhlen M. Gene expression analysis by signature pyrosequencing. Gene. 2002; 289:3-39.
  2. Ahmadian A, Gharizadeh B, Gustafsson AC. Single-nucleotide polymorphism analysis by pyrosequencing. Anal Biochem. 2000, 280:103-110. https://doi.org/10.1006/abio.2000.4493
  3. Chung KW, Yang SK, Lee GK, Kim EY, Kwon S, Kim SW. Detection of $BRAF^{V600E}$ mutation on fine needle aspiration specimens of thyroid nodule refines cyto-pathology diagnosi, especially in $BRAF^{V600E}$ mutation-prevalent area. Clin Endocrinol. 2006, 65:660-666. https://doi.org/10.1111/j.1365-2265.2006.02646.x
  4. Chung JH, Hahm JR, Min YK, Lee MS, Lee MK, Kim KW, Nam SJ, Yang JH, Ree HJ. Detection of RET/PTC oncogene rearrangement in Korean papillary thyroid carcinomas. Thyroid. 1999, 9:1237-1243. https://doi.org/10.1089/thy.1999.9.1237
  5. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J., Woffendin H., Garnett MJ, Bottomley W, Davis N. Mutations of the BRAF gene in human cancer. Nature. 2002, 417:949-954. https://doi.org/10.1038/nature00766
  6. Ezzat S, Sarti DA, Cain DR, Braunstein GD. Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med. 1994, 154:1838-1840. https://doi.org/10.1001/archinte.1994.00420160075010
  7. Fakhrai-Rad H, Pourmand N, Ronaghi M. Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum Mutat. 2002, 19:479-485. https://doi.org/10.1002/humu.10078
  8. Fukushima T, Suzuki S, Mashiko M, Ohtake T, Endo Y, Takebayashi Y, Sekikawa K, Hagiwara K. BRAF mutations in papillary carcinomas of the thyroid. Oncogene. 2003, 22: 6455-6457. https://doi.org/10.1038/sj.onc.1206739
  9. Garcia CA, Ahmadian A, Gharizadeh B, Lundeberg J, Ronaghi M. Mutation detection by pyrosequencing: sequencing of exons 5-8 of the p53 tumor suppressor gene. Gene. 2000, 253:249-257. https://doi.org/10.1016/S0378-1119(00)00257-2
  10. Haugen BR, Woodmansee WW, McDermott MT. Towards improving the utility of fine needle aspiration biopsy for the diagnosis of thyroid tumors. Clin Endocrinol. 2002, 56:281-290. https://doi.org/10.1046/j.1365-2265.2002.01500.x
  11. Hayashida N, Namba H, Kumagai A, Hayashi T, Ohtsuru A, Ito M, Saenko VA, Maeda S, Kanematsu T, Yamashita S.A rapid and simple detection method for the BRAF (T1796A) mutation in fine-needle aspirated thyroid carcinoma cells. Thyroid. 2004, 14:910-915. https://doi.org/10.1089/thy.2004.14.910
  12. Hilger RA, Scheulen ME, Strumberg D. The Ras-Raf-MEK-ERK pathway in the treatment of cancer. Onkologie. 2002, 25:511-518.
  13. Jarry M, Masson D, Cassagnau E, Parois S, Laboisse C, Denis MG. Real time allele- specific amplification for sensitive detection of BRAF mutation V600E. Mol Cell Probes. 2004, 18:349-352. https://doi.org/10.1016/j.mcp.2004.05.004
  14. Jin L, Sebo TJ, Nakamura N, Qian X, Oliveira A, Majerus JA, Johnson MR, Lloyd RV. BRAF mutation analysis in fine needle aspiration (FNA) cytology of the thyroid. Diagn Mol Pathol. 2006, 15:136-143. https://doi.org/10.1097/01.pdm.0000213461.53021.84
  15. Kang KW, No JH, Chung JH. Prevalence, clinical and ultrasonographic characteristics of thyroid incidentalomas. Thyroid. 2004, 14:29-33. https://doi.org/10.1089/105072504322783812
  16. Kim K, Kang D, Kim S, Seong IO, Kang D. Mutations of BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Med J. 2004, 45:818-821. https://doi.org/10.3349/ymj.2004.45.5.818
  17. Kim TY, Kim WB, Song JY, Rhee YS, Gong G, Cho YM, Kim SY, Kim SC, Hong SJ, Shong YK. The $BRAF^{V600E}$ mutation is useful for prediction of clinical recurrence in low-risk patients with conventional papillary thyroid carcinoma. Clin Endocrinol. 2006, 65:364-368. https://doi.org/10.1111/j.1365-2265.2006.02605.x
  18. Kim SK, Kim DL, Han HS, Kim WP, Kim SJ, Moon WJ, Oh SY Hwang TS. Pyrosequencing analysis for detection of a $BRAF^{V600E}$ mutation in an FNAB specimen of thyroid nodules. Diagn Mol Pathol. 2008, 17:118-125. https://doi.org/10.1097/PDM.0b013e31815d059d
  19. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/ PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003, 63:1454-1457.
  20. Lee HK, Hur MH, Ahn SM. Diagnosis of occult thyroid carcinoma by ultrasonography. Yonsei Med J. 2003, 44:1040-1044. https://doi.org/10.3349/ymj.2003.44.6.1040
  21. Mane SM, Meltzer SJ, Gutheil JC. RAS gene activation in acute myelogenous leukemia: analysis by in vitro amplification and DNA base sequence determination. Genes Chromosomes Cancer. 1990, 2:71-77. https://doi.org/10.1002/gcc.2870020113
  22. Meier CA. Thyroid nodules: pathogenesis, diagnosis and treatment. Baillieres Best Pract Res Clin Endocrinol Metab. 2000, 14:559-575.
  23. National Cancer Centre, Korea. 2002 Annual Report of the Korea Central Cancer Registry. 2003.
  24. Oertel YC. A pathologist trying to help endocrinologist to interpret cytopathology reports from thyroid aspirates. J Clin Endocrinol Metab. 2002, 87:1459-1461. https://doi.org/10.1210/jcem.87.4.8433
  25. Oertel YC, Burman K, Boyle L, Ringel M, Wartofsky L, Shmookler B, Yeganeh F, Nostrand DV. Integrating fine-needle aspiration into a daily practice involving thyroid disorders: the Washington Hospital Center Approach. Diag Cytopathol. 2002, 27:120-122. https://doi.org/10.1002/dc.10143
  26. Oh SY, Han JY, Lee SR Lee HT. Improved DNA Extraction Method for Molecular Diagnosis from Smaller numbers of Cells. Korean J Clin Lab Sci. 2014, 46(3):99-105 https://doi.org/10.15324/kjcls.2014.46.3.99
  27. Peyssonnaux C, Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell. 2001, 93:53-62. https://doi.org/10.1016/S0248-4900(01)01125-X
  28. Xing, M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005, 12:245-262. https://doi.org/10.1677/erc.1.0978
  29. Pak SI, Koo HS, Hwang CY, Youn HY. Application of Receiver Operating Characteristics (ROC) Curves for Clinical Diagnostic Tests. J Vet Clin. 2002, 19:312-315.

Cited by

  1. EGFR Analysis in Cytologic Samples of Lung Adenocarcinoma by Microdissection vol.47, pp.3, 2015, https://doi.org/10.15324/kjcls.2015.47.3.125