DOI QR코드

DOI QR Code

Evaluation of Cytotoxicity, Carbohydrate, and Lipid Inhibitory Activity of Codonopsis lanceolata using Different Solvent Fractions

  • Boo, Hee-Ock (Department of Biology, College of Natural Science, Chosun University) ;
  • Park, Jeong-Hun (Department of Biology, College of Natural Science, Chosun University) ;
  • Kim, Seung-Mi (Department of Biology, College of Natural Science, Chosun University) ;
  • Woo, Sun-Hee (Department of Crop Science, Chungbuk National University) ;
  • Park, Hyeon-Yong (Department of Biology, College of Natural Science, Chosun University)
  • Received : 2015.12.07
  • Accepted : 2015.12.10
  • Published : 2015.12.31

Abstract

This study was conducted to evaluate the cytotoxicity and ${\alpha}-Amylase$, ${\alpha}-Glucosidase$, pancreatic lipase inhibition in vitro by different solvent fractions from the roots of Codonopsis lanceolata. The values of $IC_{50}$ against Calu-6 cell showed a high effect in n-hexane fraction ($10.13{\mu}g/mL$) whereas DW fraction exhibited the weakest inhibition on cell viability, having an $IC_{50}$ value of over $1,000{\mu}g/mL$. The values of $IC_{50}$ against HCT-116 cell showed the highest activity in n-BuOH fraction ($102.01{\mu}g/mL$), followed by n-hexane fraction ($145.85{\mu}g/mL$), methylene chloride fraction ($332.02{\mu}g/mL$), ethyl acetate fraction ($462.93{\mu}g/mL$) and DW fracion ($>1,000{\mu}g/mL$). ${\alpha}-Amylase$ inhibitory activity in methylene chloride fraction and ethyl acetate fraction was found to have a higher inhibitory effect with 24.5% and 25.6% than the other fractions. The highest ${\alpha}-Glucosidase$ inhibitory activity was observed from the ethyl acetate fraction extract, while the extract of DW fraction showed the lowest level of inhibitory activity at given experiment concentration. The pancreatic lipase inhibitory activity of C. lanceolata was found to have a higher the effect in ethyl acetate fraction. Inhibition of lipase activity of the ethyl acetate fraction and n-hexane fraction showed a relatively high, while the extract of DW fraction showed the lowest level at given experiment concentration. These results suggested that the roots of C. lanceolata may assist in the potential biological activity on carbohydrate, lipid Inhibitory activity and anticancer activity.

Keywords

References

  1. Davidson, M. H., J. Hauptman, M. DiGirolamo, J. P. Foreyt, C. H. Halsted, and D. Heber. 1999. Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: A Randomized Controlled Trial. JAMA. 281 : 235-242. https://doi.org/10.1001/jama.281.3.235
  2. Frantz, S., L. Calvillo, J. Tillmanns, I. Elbing, C. Dienesch, H. Bischoff, G. Ertl, and J. Bauersachs. 2005. Repetitive postprandial hyperglycemia increases cardiac ischemia/reperfusion injury: prevention by the alpha-glucosidase inhibitor acarbose. FASEB J. 19 : 591-593. https://doi.org/10.1096/fj.04-2459fje
  3. Hara, Y. and M. Honda. 1990. The inhibition of a-amylase by tea polypphenols. Agri. Biol. Chem. 54(8) : 1939-1945. https://doi.org/10.1271/bbb1961.54.1939
  4. He, Q., Y. Lv, and K. Yao. 2006. Effects of tea polyphenols on the activities of ${\alpha}$-amylase, pepsin, trypsin and lipase. Food Chem. 101 : 1178-1182.
  5. Joh, E. H., I. A. Lee, S. J. Han, S. J. Chae, and D. H. Kim. 2010. Lancemaside A ameliorates colitis by inhibiting NF-jB activation in TNBS-induced colitis mice. Int. J. Colorectal Dis. 25 : 545-551. https://doi.org/10.1007/s00384-009-0858-0
  6. Jung, S. W., A. J. Han, H. J. Hong, M. G. Choung, K. S. Kim, and S. H. Park. 2006. ${\alpha}$-Glucosidase inhibitors from the roots of Codonopsis lanceolata Trautv. Agric. Chem. Biotechnol. 49(4) : 162-164.
  7. Kim, H. Y., S. H. Lim, Y. H. Park, H. J. Ham, K. J. Lee, D. S. Park, K. H. Kim, and S. M. Kim. 2011. Screening of ${\alpha}$-amylase, ${\alpha}$-glucosidase and lipase inhibitory activity with Gangwon-do wild plants extracts. J. Korean Soc. Food Sci. Nutr. 40(2) : 308-315. https://doi.org/10.3746/jkfn.2011.40.2.308
  8. Kim, Y. M., Y. K. Jeong, M. H. Wang, W. Y. Lee, and H. I. Rhee. 2005. Inhibitory effect of pine extract on ${\alpha}$-glucosidase activity and postprandial hyperglycemia. Nutrition. 21 : 756-761. https://doi.org/10.1016/j.nut.2004.10.014
  9. Kimura, Y., Y. Araki, A. Takenaka, and K. Igarashi. 2006. Protective effect of dietary nasunin and parapect induced oxidative stress in rat. Biosci. Biotechnol. Biochem. 63 : 799-804.
  10. Kintzios, E. 2006. Terrestrial plant-derived anticancer agents and plant species used in anticancer research. Crit. Rev. Plant Sci. 25 : 79-113. https://doi.org/10.1080/07352680500348824
  11. Kurihara, H., H. Shibata, Y. Fukui, Y. Kiso, J. K. Xu, X. S. Yao, and H. Fukami. 2006. Evaluation of the hypolipemic property of Camellia sinensis var. ptilophylla on postprandial hypertriglyceridemia. J. Agric. Food Chem. 54 : 4977-4981. https://doi.org/10.1021/jf0603681
  12. Marshall, J. J. and C. M. Lauda. 1975. Purification and properties of phaseolamin, an inhibitor of alpha-amylase, from the kidney bean, Phaseolus vulgaris. J Biol Chem. 250 : 8030-8037.
  13. Moller, N. P., N. Roos, and J. Schrezenmeir. 2009. Lipase inhibitory activity in alcohol extracts of worldwide occurring plants and propolis. Phytother. Res. 23 : 585-586. https://doi.org/10.1002/ptr.2637
  14. Oh, S. J., J. H. Lee, K. S. Ko, D. B. Shin, and S. C. Koh. 2010. Antioxidative activity, including inhibitory activities of ACE, APN and ${\alpha}$-amylase, in Theaceae plants native to Jeju Island. Korean J. Plant Res. 23(5) : 406-414.
  15. Park, H. J., M. J. Kim, E. Ha, and J.H. Chung. 2008. Apoptotic effect of hesperidin through caspase 3 activation in human colon cancer cells, SNU-C4. Phytomedicine. 15 : 147-151. https://doi.org/10.1016/j.phymed.2007.07.061
  16. Rahul, B. B. and K. B. Kamlesh. 2007. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov. Today. 12 : 879-889. https://doi.org/10.1016/j.drudis.2007.07.024
  17. Satoyama, T., T. Hara, M. Murata, and Y. Fujio. 1998. A simple assay method for ${\alpha}$-amylase using microplates. Nippon Nogeikagaku Kaishi. 72 : 933-936. https://doi.org/10.1271/nogeikagaku1924.72.933
  18. Sharma, N., V. K. Sharma, and S. Y. Seo. 2005. Screening of some medicinal plants for anti-lipase activity. J. Ethnopharmacol. 97 : 453-456. https://doi.org/10.1016/j.jep.2004.11.009
  19. Vadivelan, R., S. P. Dhanabal, A. Wadhawani, and K. Elango. 2012. ${\alpha}$-Glucosidase and ${\alpha}$-amylase inhibitory activities of Raphanus sativus Linn. IJPSR. 3(9) : 3186-3188.
  20. Vijayarathna, S. and S. Sasidharan. 2012. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines. Asian Pac. J. Trop Biomed. 2(10) : 826-829. https://doi.org/10.1016/S2221-1691(12)60237-8
  21. Wang, H. Z., C. H. Chang, C. P. Lin, and M. C. Tsai. 2006. Using MTT viability assay to test the cytotoxicity of antibiotics and steroid to cultured porcine corneal endothelial cells. J. Ocular Pharm Therapeutics 12 : 35-43.
  22. Wang, L., M. L. Xu, J. H. u, S. K. Rasmussen, and M. H. Wang. 2011. Codonopsis lanceolata extract induces G0/G1 arrest and apoptosis in human colon tumor HT-29 cells - Involvement of ROS generation and polyamine depletion. Food Chem. toxicol. 49 : 149-154. https://doi.org/10.1016/j.fct.2010.10.010
  23. Yan-Wei, H., L. Chun-Yu, D. Chong-Min, W. Wen-Qian, and G. Zhen-Lun. 2009. Induction of apoptosis in human hepatocarcinoma SMMC-7721 cells in vitro by flavonoids from Astragalus complanatus. J. Ethnopharmacol. 123 : 293-301. https://doi.org/10.1016/j.jep.2009.03.016
  24. Zhang, J., M. J. Kang, M. J. Kim, M. E. Kim, J. H. Song, Y. M. Lee, and J. I. Kim. 2008. Pancreatic lipase inhibitory activity of taraxacum officinale in vitro and in vivo. Nutr. Res. Pract. 2(4) : 200-203. https://doi.org/10.4162/nrp.2008.2.4.200