The Simple and Rough Screening Method of Phosphorus Deficient Tolerance Rice

Woon-Ha Hwang^{*†}, Dae-Wook Kim*, Jae-Heok Jeong*, Han-Yong Jeong*, Hyen-Seok Lee*, Kyung-Jin Choi*, Gun-Hwi Lee*, In-Jung Lee**, and Sung-Hwan Oh*

*National Institute of Crop Science (NICS), RDA, Jeonju 55365, Republic of Korea **School of Applied Bioscience, Kyung pook national university, Deagu 41566, Republic of Korea

ABSTRACT Even though phosphorus (P) is essential element for plant growth and development, it is not enough for crop production in soil. To breed more P deficient tolerance rice, screening and selection in rice population is needed. We tried to develop more simple and rough screening method for breeding of P deficient tolerance rice. In P deficient condition, tiller number was dramatically decreased among yield components in rice. Though this result, we confirmed tiller number could be the best marker in screening of P deficient tolerance rice. 480 rice genetic resources were cultivated in rice bed tray filled with P deficient soil for four weeks and each dry weight was measured. Among them, the 55 kinds of genetic resource were selected then cultivated in paddy field with 3 fertilizer conditions. Plant dry weight and tiller number in ripening stage were shown significant difference according to P condition. Plant dry weight and tiller number in ripening stage was highly correlated especially in P deficient condition. Furthermore, the tiller number in ripening stage and plant dry weight in rough screening were shown high degree correlation. Though these results, we might expect measuring of plant dry weight after cultivation in rice bed tray filled with P deficient soil could be a simple and effective screening method in selection of P deficient tolerance rice.

Keywords : rice, phosphorus, screening, deficient, tolerance, dry weight

Rice is one of the main cereal crops with wheat and corn in the world. For effective rice cultivation, enough nutrient condition is needed. However, level of plant-available phosphate (P) is very low in soils. Most of soils in the world are reported as P deficient condition, even available P content seldom exceeds 10 μ m (Bieleski, 1973). Therefore, it is one of the main factors in reduction of rice production throughout the world. P deficient can be

overcome by treating chemical fertilizer. When P fertilizer treated, plant could absorb just 20% of treated P fertilizer and about 80% of those is combined with other inorganic compounds then changed as unavailable P which plant cannot uptake. Around 90% of chemical P fertilizer was made using phosphate rocks (Brunner, 2010). The remaining amount of phosphate rock is expected to be extinguished within 50~100 years if used as these days (Steen, 1998; De Haes et al., 2009; Smit et al., 2009; Vaccari, 2009; Cordell, 2010.). Therefore, many scientists have been investigated to develop more P deficient tolerance rice (Kaeppler et al., 2000; Wissuwa et al., 2005; Beebe et al., 2006; Heuer et al., 2009). In P deficient condition, growth performances are changed. The leaf expansion, leaf surface area and leaf number are significantly reduced in P deficient condition. The process of carbohydrate utilization become slow so dark green leaf is easily discovered for buildup of carbohydrates in leaf. The shoot growth is also reduced in such a condition.

Hung *et al.* (1985) and Wissuwa *et al.* (1998) reported tillering ability and dry weight could be the best marker to monitor phosphate-deficient tolerance in experiment of using indica type rice. To develop more P deficient tolerance rice, selecting of elite line by screening with large population or genetic resources is essential. Even though dry weight and tiller number could be a marker for selecting P deficient tolerance rice, it is time and labor consumed work in rice breeding. Therefore, when screening P deficient tolerance rice using the huge of genetic resources, it could be more effective that selecting elite line by more elaborate and accurate screening method after reducing target genetic resources by rough screening method. In this study, we firstly investigated the change of agronomic characters in rice under P deficient tolerance japonica rice. Then we tried to develop more

[†]Corresponding author: (Phone) +82-55-350-1168 (E-mail) osh0721@korea.kr <Received July 1, 2015; Revised August 17, 2015; Accepted August 19, 2015>

© 본 학회지의 저작권은 한국작물학회지에 있으며, 이의 무단전재나 복제를 금합니다.

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nitrogen (%) 2.51^a 2.49^{a} 2.51^a 2.54^{a}

 2.52^{a}

 2.47^{a}

simple and effective method to rough screening of P deficient tolerance rice.

MATERIALS AND METHODS

The analysis of nutrient content in soil

The soil was collected before rice cultivation. Three samples of soil in each plot were collected and dried at 60~70°C for 3 days. Dried soil samples were crushed well and sieved using 2 mm sieve. 5 g of soil sample were measured and put in grass flask. 20 ml of extraction solution was added in each grass flask then shook for ten min at 200 rpm. Extraction solution was contained 0.33 M CH₃CHOOH, 0.15 M lactic acid, 0.03 M NH₄F and 0.05 M (NH₄)₂SO₄. After shook ten min, extracted solution was filtered then available phosphorus was measured by Lancaster methods (NIAST, 2002), nitrogen and carbon content were measured by Kjeldahl method (Varley, 1966) and inorganic component were measured by inductively coupled plasma spectrometry.

5.79^a

5.69^a

 0.47^{a}

 0.41^{a}

-NPK

P deficient soil

Investigation of finding the best marker in selection P deficient tolerance rice

The Hwayeongbyeo is used as material and cultivated in paddy field which have be maintained various fertilizer conditions over twenty years. Fertilizer condition have been created like ascontrol (NPK), nitrogen deficient (-N), phosphate deficient (-P), potassium deficient (-K) and all fertilizer deficient (-NPK) treatment. The amount of fertilizer was treated as following the standard rice cultivation method of rice (RDA, 2001). The thirty days old plants were transplanted as three plants per hill at 20th of May in 2013~2014. Agronomic traits were investigated 40 days after heading stage. Culm length, panicle length and tiller number of 10 plants were investigated in each plot. For analyzing the yield traits, 100 plants of each plot were cultivated. After dried and adjusted the water content of seed as 14%, seed weight of 100 plants were measured.

Plant materials and cultivation of rice in bed tray for rough screening

The 480 kinds of rice genetic resources were used as materials (Supplementary Table 1). Rice genetic resources was sowed

0.85^a

 0.87^{a}

 17.40^{a}

17.15^a

Table 1. Nutrient	content in soil	of paddy	field and	P deficient	soil before	rice cultiva	tion.	
Condition	рН	EC	OM	P_2O_5	Exchangeable elements (cmol/kg)			Carbon
Condition	(1:5)	EC	(g/kg)	(mg/kg)	K	Ca	Mg	(%)
Control	5.65 ^a	0.45 ^a	24.1 ^a	266 ^d	0.13 ^a	3.93 ^a	0.94 ^a	17.12 ^a
-N	6.01 ^a	0.42^{a}	24.4^{a}	362 ^e	0.20^{a}	3.76 ^a	0.91 ^a	17.26 ^a
-P	5.66 ^a	0.43 ^a	22.8 ^a	12^{b}	0.15 ^a	3.48 ^a	0.80^{a}	17.56 ^a
-K	5.67 ^a	0.40^{a}	24.1 ^a	249 ^d	0.11^{a}	3.88 ^a	0.90^{a}	16.80^{a}

45^c

 4.7_{a}

0.11^a

0.13^a

3.77^a

3.8 ^a

23.7^a

22.7^a

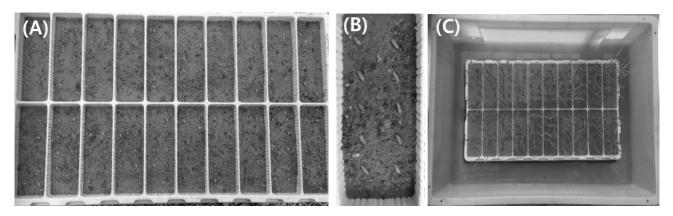


Fig. 1. Sowing of rice genetic resources in bed tray $(A) \sim (B)$ and growth of rice genetic resources in bed tray (C).

after soaking 3 days in 30°C water after disinfection. The rice bed tray was divided into twenty spaces and filled with P deficient soils. Ten rice seed of each genetic resource was sowed in a space, covered with P deficient soils then incubated in green house for three days. Rice bed trays were put on tray with water (Fig. 1). After four week cultivation in green house, ten rice plant in each genetic resources was cleaned and dried for three days in 70°C dry oven. The dry weight of plant in each rice genetic resources was measured then fifty rice genetic resource were selected for further research.

Fifty of selected genetic resources were cultivated in paddy field with three fertilizer conditions. 9 kg of nitrogen, 4.5 kg of phosphate and 5.7 kg of potassium per were treated 10 are for control condition. For P deficient condition (no P), the 0 kg of P fertilizer were treated in field which filled with P deficient soil. For low P (low P) condition, the 4.5 kg of P fertilizer treated in field which filled with conventional cultivated soil. Nitrogen and potassium were treated like as control condition in both P deficient and low P condition. Agronomic characters like as tiller number, plant height and dry weight were investigated forty days after flowering date.

Statistical analysis

SAS version 9.2 (SPSS Inc) was used for data analysis. Duncan's multiple range test (DMRT) was carried out to identify significant differences (P < 0.05) between individual treatments.

RESULTS

The nutrient contents of soil before rice cultivation In analyzing the soil nutrient content in paddy field with various fertilizer conditions, all nutrient content were not significantly different except P₂O₅ (Table 1). P₂O₅ content in soil was 266 mg per 1 kg of soil in control condition. In -K condition, P₂O₅ content in soil was not significantly different compare to that in control condition. In -N condition, P_2O_5 content in soil was increased as 362 mg per 1 kg of soil. However P_2O_5 content in -P and -NPK soil were significantly decreased as 12 and 45 mg per 1 kg of soil, respectively.

The nutrient content of P deficient soil for rice bed tray experiment was also measured. The P_2O_5 was in P deficient soil was 4.7 ppm per kg. Other nutrient content like as K, Ca and Mg did not show significant difference compare to conventional cultivated soil.

P effect on rice growth

In ripening stage, culm length was 64 cm in control condition. That was about 62.3~63.5 cm in -N, -P and -K condition. Culm length was 55 cm in -NPK condition. Panicle length was 18 cm in control condition. In -P condition, panicle length was 20.4 cm. In -N, -K and -NPK condition, panicle length was about 18.4~ 19.8 cm. Tiller number was 11.5 in control condition. It was significantly decreased in -N, -P and -NPK condition as 8.8, 7.2 and 6.0 respectively. However, it was not different in -K condition a 11.1 (Table 2).

Among agronomic characters, thousand grains weight did not show significant difference according to fertilizer treatment. Number of grain per spikelet was 85.1 in control condition. It was slightly decreased in -K condition as 81.6 but did not showed significant difference. In -N and -P condition, it was

 Table 2. The growth characters of Hwayeongbyeo according to fertilizer condition.

Treatments	Culm length (cm)	Panicle length (cm)	Tiller number (No./plant)
Control	64.0 ± 2.3^{b}	18.3 ± 1.4^{a}	11.5 ± 2.3^{d}
-N	$62.3~\pm~2.7^{b}$	19.8 ± 2.1^{a}	$8.8~\pm~1.3^{\rm c}$
-P	63.5 ± 1.9^{b}	$20.4~\pm~1.9^a$	7.2 ± 1.2^{b}
-K	$62.5~\pm~2.1^{b}$	18.4 ± 1.6^{a}	11.1 ± 2.1^{d}
-NPK	$55.2~\pm~2.6^{\rm a}$	18.4 ± 1.1^{a}	$6.0~\pm~1.5^{\rm a}$

Table 3. The yield traits of Hwayeongbyeo according to different fertilizer treatments

Treatments	No. of grain per spikelet (No.)	1000 grains weight (g)	Ripening rate (%)	Yield of milled rice (kg/10a)
Control	85.1 ± 15^{b}	22.1 ± 0.3^{a}	83.9 ± 2.1^{a}	$456.1 \pm 25^{\circ}$
-N	74.1 ± 13^{ab}	22.3 ± 0.4^{a}	72.3 ± 1.8^{b}	355.3 ± 21^{b}
-P	71.4 ± 11^{b}	$22.3~\pm~0.8^{\rm a}$	83.1 ± 2.2^{b}	257.3 ± 29^{b}
-K	81.6 ± 8^{b}	$22.6 ~\pm~ 0.7^{\rm a}$	84.4 ± 2.1^{b}	$445.1 \pm 33^{\circ}$
-NPK	65.3 ± 9^a	21.1 ± 0.7^{a}	77.0 ± 1.5^{a}	214.4 ± 15^{a}

similar as 74.1 and 71.4 respectively. In –NPK condition, it was dramatically decreased as 65.3. Ripening rate was 83.9% in control condition. In –P and –K condition, it was similar with control condition as 83.1% and 84.4%. In –N condition, ripening rate was 72.3% and it was 77% in –NPK condition. Yield of milled rice showed the largest difference according to different fertilizer condition, it was slightly decreased as 445.4 but did not showed significant difference. In –N condition, yield of milled rice was 355 kg per 10 are and it was 214 and 257 kg per 10 are in –NPK and –P condition, respectively (Table 3).

Rough screening and cultivation in paddy field using selected materials

After cultivation in rice tray filled with P deficient soil for four weeks, plant dry weights of 480 genetic resources were measured. It was from 0.01 to 0.341 g. To further study, we selected fifty genetic resources among 480 genetic resources (Fig. 2).

In field experiment with different P condition, several agronomic characters were measured. Plant dry weight was showed significant difference according to P condition in soils. It was 17.2 g in no P condition. It was increased as 27.37 g and 34.24 g in low P and control condition, respectively. Plant height was 66.4 cm in no P condition. It also increased as 80.3 cm in low P condition. However it did not show significant difference in control condition as 81.6 cm compare to low P condition. Culm length was 22.1 cm in no P condition. It did not show significant difference in low P and control condition compare to no P condition as 23.5 cm and 23.7 cm, respectively. Tiller number was 5.4 in no P condition. It was increased as 8.7 and 10.7 in low P and control condition, respectively.

The correlation of plant dry weight per plant with tiller number

in ripening stage was investigated. It was showed high degree correlation as 0.7638 in no P condition. Even though it was slightly decreased in low P condition, it was still high as 0.6274 (Fig 4). Plant dry weight in rough screening and those in paddy field was showed high degree correlation especially in no P condition as 0.7576. The correlation between those was decreased as 0.418 and 0.298 in low and control P condition, respectively (Fig. 5 (A)~(C)). Tiller number in ripening stage which cultivated in no P condition was showed significant correlation with dry weight in rough screening as 0.7915. It was decreased as 0.6987 in low P condition, and it was further decreased as 0.1921 in control P condition (Fig. 5 (D)~(F)).

DISCUSSION

In analyzing of phosphate fertilizer effect on rice growth characters, several characters were changed (Table 2, Table 3). Among yield traits, grain number per spikelet, ripening rate and tiller number were changed. As the change of yield traits, actual yield of milled rice was also changed. Khalid reported yield of rice was increased by treating phosphate fertilizer initially up to certain level due to increase of panicle number (Khalid, 2013). Aziz et al. (2006) also reported the phosphorus deficiency could reduce the crop yield by 10~15%. Yield of milled rice was significantly decreased in all condition except potassium deficient condition. In potassium deficient condition, even though grain number of spikelet was decreased about 10%, yield of milled rice did not show significant difference with control condition. However yield of milled rice was greatly influenced by nitrogen and phosphate condition. The 26% of tiller number, 20% of grain number and 14% of ripening rate were decreased by nitrogen

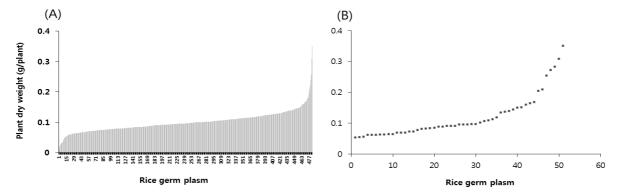


Fig. 2. Plant dry weight of (A) all rice genetic resources and (B) selected rice genetic resources cultivated under bed tray contained P deficient soil.

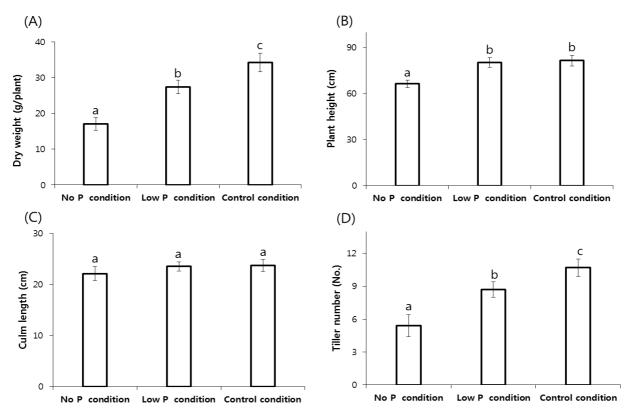


Fig. 3. Change of plant dry weight (A), plant height (B), culm length (C) and tiller number per plant (D) according to P condition.

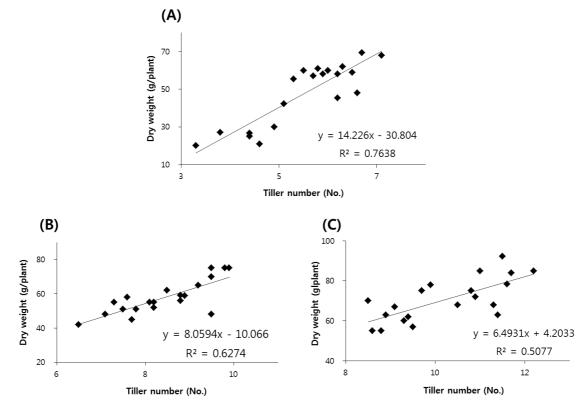


Fig. 4. Correlation of dry weight with tiller number in ripening stage under (A) in no P, (B) in low P, (C) in control condition.

deficiency. In phosphate deficient condition, the 32% of tiller number and 17% of grain number were decreased. Yield of milled rice was decreased about 32% by nitrogen deficiency, 54% by phosphate deficiency. These results might indicate decrease of tiller number is the main factor in decrease of yield in rice under phosphate deficient condition. Through this result, we would confirm phosphate is needed to get reliable tiller number and yield in rice. Thus tiller number could be the best marker in selection of phosphate deficient tolerance rice not only in indica type but also japonica type.

In analyzing nutrient content of soil, P content in P deficient soil which is used in rough screening was similar with P deficient paddy field. With these results, we could confirm the growth of rice in paddy field which contained low P could be replaced by cultivation of rice in P deficient soil because the nutrient condition of P deficient soil was similar as P deficient paddy field.

After measuring plant dry weight of rice genetic resources which cultivated in rice bed tray contained P deficient soil, we select fifty rice genetic resources then cultivated those in paddy field with three kinds of P condition (Fig. 2). Plant dry weight and tiller number per plant in ripening stage were shown significant difference under different P condition. Those were the lowest in no P condition, increased in low P condition and further increased in control condition. Plant height was also increased in low P condition compare to no P condition. However it did not showed difference in control condition compare to low P condition. Culm length did not show any difference under difference P condition (Fig. 3). Though these results, we could consider plant dry

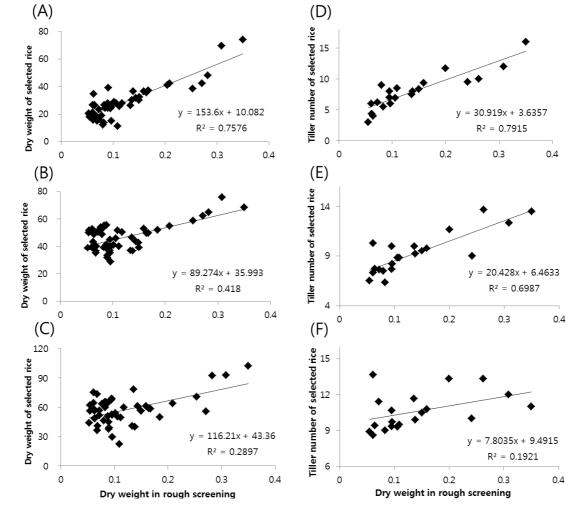


Fig. 5. (A)-(C): Correlation of plant dry weight in rough screening with plant dry weight of selected rice cultivated in (A) no P, (B) low P and (C) control condition. (D)-(F): Correlation of plant dry weight in rough screening with tiller number of selected rice cultivated in (A) no P, (B) low P and (C) control condition.

weight and tiller number could be increased by treated P nutrient. So we investigated the correlation of plant dry weight with tiller number under different P condition. It was 0.7638, 0.6274 and 0.5077 in no P, low P and control condition, respectively (Fig. 4). Even it was slightly decreased according to add P fertilizer, plant dry weight was still showed high degree correlation with tiller number in P deficient condition. Though these results, we confirmed that plant dry weight could be measured instead of tiller number under P deficient condition. Finally we checked the correlation of plant dry weight in rough screening with plant dry weight and tiller number in ripening stage in paddy. Plant dry weigh in rough screening was showed high degree correlation as 0.7576 with those in paddy field especially under no P condition (Fig. 5). We could expect that P deficient tolerance rice which was show high dry weight under P deficient condition could also get high dry weight under rice bed tray filled with P deficient soil. And P sensitive rice could not grow well not only in P deficient paddy field but also in rice bed tray filled with P deficient soil. In analyzing the correlation of plant dry weight in rough screening with tiller number in ripening stage, it showed high degree correlation as 0.7915 and 0.6987 under P deficient condition (Fig. 5). We could consider plant dry weight in rough screening was highly related with tiller number in ripening stage cultivated in P deficient condition. Although tiller number of rice under P deficient condition could not be expected clearly by measuring plant dry weight though rough screening, we could select P deficient tolerance rice which could get more tillers under P deficient condition by measuring plant dry weight after cultivated in P deficient soil. We expect that this rough screening method of P deficiency tolerance rice could help saving labor and time in rice breeding.

ACKNOWLEDGEMENTS

This study was carried out with the support of the 'Research Program for Agricultural Science & Technology Development (Project No. PJ01156001)', National Institute of Crop Science, RDA, Republic of Korea.

REFERENCES

Aziz, T. Rahmatullah Maqsood, M. A. Tahir, M. A. Ahmad, I. Cheema, M. A. 2006. Phosphorus utilization by six brassica cultivars (*Brassica juncea* L.) from tri-calcium phosphate, a relative insoluble P compound. Pakistan J Bot. 38: 1529-1538.

- Beebe, S. E., M. Rojas, X. Yan, M. W. Blair, F. Pedraza, F. Munoz, J. Tohme, and J. P. Lynch. 2006. Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci. 46 : 413-423.
- Bieleski, R. L. 1973. Phosphate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant Physiol. 24 : 225-52.
- Brunner, P. H. 2010. Substance flow analysis as a decision support tool for phosphorus management. Journal of Industrial Ecology. 14(6): 870-3.
- Cordell, D. 2010. The story of phosphorus. Sustainability implications of global phosphorus scarcity for food security. Linkoping University.
- Heuer, S., X. Lu, J. H. Chin, J. P. Tanaka, H. Kanamori, T. Matsumoto, T. De Leon, V. J. Ulta, A. M. Ismail, M. Yano, and M. Wissuwa. 2009. Comparative sequence analysis of the major quantitative trait locus phosphorus uptake 1(Pup1) reveal a complex genetic structure. Plant Biotechnol. J. 7: 456-471.
- Hung, H. 1985. Studies on tillering ability of rice under phosphorus stress. PhD thesis., A and M university. Texas.
- Kaeppler, S. M., J. L. Parke, S. M. Muelle, L. Senior, C. Stuber, and W. F. Tracy. 2000. Variation among maize inbred lines and determination of QTL for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci. 40 : 358-364
- Khalid, U. 2013. Effect of phosphorus and orrogation levels on yield, water productivity, phosphorus use efficiency and income of lowland rice in northwest Pakistan. Rice Science. 20(1):61-72
- NIAST (National Institute of Agricultural Science and Technology) 2000. Methods of soil and plant analysis. RDA. Jeon-ju, Korea.
- Rural Development Administration, 2001, Standard cultivation methods of rice. RDA, Jeon-ju, Korea.
- Steen, I. 1998. Phosphorus availability in the 21st Century : management of a nonrenewable resource. Phosphorus and Potassium. 217 : 25-31.
- De Haes, H. A. U., J. Jansen, L. A. Van Der Weijden, and W. J. A. L. Smit. 2009. Phosphate-from surplus to shortage. In: Policy memorandum of the steering Committee for Techno; ogy Assessment. Utrecht: Ministry of Agriculture, Nature and Food Quality, 2009.
- Smit, A. L. P. S. Bindraban, J. J. Schrodor, J. G. Conijn, and H. G. Van Der Neer. 2009. Phosphorus in agriculture: global resources trends and developments. Wageningen, The Netherlands: Plant Research International B.V.
- Vaccari, D. A. 2009. Phosphorus: a looming crisis. Scientific American. 300 : 54-59.
- Varley, J. 1966. The determination of N, P, and K ions in plant materials. Analyst., 91 : 119-126.
- Wissuwa, M., K. Gatdula, and A. Ismail. 2005. Candidate gene characterization at the Pup1 locus, a major QTL increasing tolerance to phosphorus deficiency? Small causes with big effects. Plant Phys. 133 : 1947-1958.
- Wissuwa, M., M. Yano, and N. Ae. 1998. Mapping for phosphorusdeficiency tolerance rice (*Oryza sativa* L.). Theor. Appl. Genet. 97 : 777-783.

Appendix. The list of rice genetic resources for rough screening.

List	Lines	List	Lines	List	Lines	List	Lines
1	Andabyeo (안다벼)	64	Heugjinjubyeo(흑진주벼)	127	Mihyangbyeo(미향벼)	190	Yeonghojinmi(영호진미)
2	Anmi(안미)	65	Heugnambyeo(흑남벼)	128	Mikwang(미광)	191	Yongjubyeo(영주벼)
3	Aranghyangchalbyeo(아랑헝찰벼)	66	Heugseol(흑설)	129	Milyang154(밀양154)	192	Yongmunbyeo(영문벼)
4	Areumbyeo(아름벼)	67	Hongjinju(홍진주)	130	Milyang215(밀양215)	193	2428
5	Baegjinju 1(백진주1)	68	Honong(호농)	131	Milyang221(밀양221)	194	04P251
6	Baekogchal(백옥찰)	69	Hopum(호품)	132	Milyang226(밀양226)	195	92 Tangi2964
7	Boramchan(보람찬)	70	Hopyeong(호평)	133	Milyang23(밀양23)	196	Akenohoshi
8	Borami(보라미)	71	Hwanambyeo(하남벼)	134	Munjangbyeo(문장벼)	197	Akidagomachi
9	Boseogchal(보석찰)	72	Hwanggeumbora(황금보라)	135	Naepungbyeo(내평벼)	198	Аро
10	Boseogheugchal(보석흑찰)	73	Hwanggeumnodeul(황금노들)	136	Namcheonbyeo(남천벼)	199	ARPA THALY
11	Cheongcheongbyeo(청청벼)	74	Hwanggeumnuri(황금누리)	137	Nampyeongbyeo(남평벼)	200	ARPA303
12	Cheongcheongjinmi(청청진미)	75	Hwarang(화랑)	138	Namyeongbyeo(남영벼)	201	Aya
13	Cheonghaejinmi(청해진미)	76	Hwaseongbyeo(화설벼)	139	Nogyang(녹양)	202	B1053A-5-10-1-2
14	Cheongho(청호)	77	Hwasin 1(화신1)	140	Nunbora(눈보라)	202	Basmati 389
15	Cheongnam(청남)	78	Hwayeongbyeobyeo(화영벼)	141	Obongbyeo(오봉벼)	203	Basmati wx
16	Cheongsumi(청수미)	79	Hyangmibyeo 2(향미벼2)	142	Odae1(오대1)	205	Binhae selection 1
17	Jeogjinjuchal(적진주찰)	80	Hyangnambyeo(향남벼)	143	Odaebyeo(오대벼)	205	Bugkyeong selection
18	Hanareum 2(한아름2)	81	Ilmibyeo(일미벼)	143	Onnuri(온누리)	200	C18
							C18 C21
19 20	Chilbo(칠보) Chilseongbyeo(칠성벼)	82 83	Ilpumbyeo(일품벼)	145 146	Pungmi(풍미) Pungmi 1(풍미1)	208 209	C21 C39
			Jangseongbyeo(장성벼)		0		C39 C40
21	Chucheongbyeo(추청벼)	84	Jeogjinjubyeo(적진주벼)	147	Saechucheongbyeo(새추청벼)	210	
22	Dacheong(다청)	85	Jeogjinjuchal(적진주찰)	148	Saegyehwa(세계화)	211	Chanseobyeo(찬세벼)
23	Dami(다미)	86	Jinbaek(진백)	149	Saegyejinmi(세계진미)	212	Chen Ma Ai
24	Danmi(단미)	87	Jinbo(진보)	150	Saenuri(새누리)	213	Chen Shin Ai4
25	Dasan 1(다산1)	88	Jinbongbyeo(진봉벼)	151	Saesangjubyeo(새상주벼)	214	Cheongmu
26	Dasan 2(다산2)	89	Jinbubyeo(진부벼)	152	Sambaegbyeo(삼백벼)	215	Cheonsoo
27	Dasanbyeo(다산벼)	90	Jinbuolbyeo(진부올벼)	153	Samdeogbyeo(삼덕벼)	216	Congshengla
28	Deuraechan(드래찬)	91	Jinmibyeo(진미벼)	154	Samgangbyeo(삼강벼)	217	Dan9877
29	Donganbyeo(동안벼)	92	Jinsumi(진수미)	155	Samgwang(삼왕)	218	Daw dam
30	Donghaejinmi(동해진미)	93	Joami(조아미)	156	Sampyeongbyeo(삼평벼)	219	Dharial
31	Dongjin 1(동진1)	94	Joan(조운)	157	Sandeuljinmi(산들진미)	220	Dian 35
32	Dongjin 2(동진2)	95	Jogwang(조광)	158	Sanggolbyeo(상골벼)	221	DNJ46
33	Dongjinbyeo(동진벼)	96	Joryeongbyeo(조령벼)	159	Sangjubyeo(상주벼)	222	Dohoku 144
34	Dongjinchalbyeo(동진찰벼)	97	Anmi(안미)	160	Sangjuchalbyeo(상주찰벼)	223	Dragon Eyeball 100
35	Gangchan(강찬)	98	Josaengheugchal(조생흑찰)	161	Sangmibyeo(상미벼)	224	Erguailai
36	Chinnong (친농)	99	Joun(조운)	162	Sangnambatbyeo(상남밭벼)	225	esp-4
37	Gayabyeo(7户0注时)	100	Junambyeo(주남벼)	163	Sangok(상옥)	226	Fujihikari
38	Geonganghongmi(건강홍미)	101	Junamjosaeng(주남조생)	164	Sangun(상운)	227	Gamheukmi(감흑미)
39	Geumgangbyeo(금강벼)	102	Jopyeong(조평)	165	Seolgaeng(설갱)	228	Gamhongmi(감홍미)
40	Geumyeong(급영)	103	Junghwabyeo(중화벼)	166	Seolhyangchalbyeo(설향찰벼)	229	Gebaecheonghyangna
41	Geurubyeo(그루벼)	104	Jungmo 1004(중모1004)	167	Seomyeong(세명)	230	Gillim collection 1
42	Goami 2(고아미2)	105	Jungmo1005(중모1005)	168	Seopyeong(세평)	231	Gillimheugmi
43	Goami 3(고아미3)	106	Hanareum 2(하남벼)	169	Shinbaeg(신백)	232	Gillinnogmi 1
44	Goami 4(고아미4)	107	Jungmo1011(중모1011)	170	Shindongjinbyeo(신동진벼)	232	Gumei 2
45	Goamibyeo(고아미벼)	108	Jungmo1014(중모1014)	171	Shingwangbyeo(신광벼)	234	Gumei 4
46	Goun (고운)	100	Jungmo1015(중모1015)	172	Shinkeumobyeo(신금오벼)	235	Gyeongchal 1
47	Gwangmyeongbyeo(광명벼)	110	Jungmo1012(중모1012)	173	Shinkeunobyeo(신설찰벼)	236	Hawn
48	Gyehwabyeo(계화벼)	111	Keumo 3(금오3)	174	Shintoheugmi(신토흑미)	230	Heijiao
49	Haechanmulgeol(해찬멸경)	112	Keumobyeo(금오벼)	174	Shinunbong 1(신운봉1)	238	Heugchal
49 50	Jinbo(진보)	112	Keumobyeo 1(금오벼1)	175	Sobibyeo(소비벼)	238	Heughvangjeong
51	Haeoreumi(해오르미)	113	Keumobyeo 2(금오벼2)	170	Suan(수안)	239 240	Heugjangmichal
51 52	Haepyeongbyeo(해평벼)	114	Keunnobyeo 2(금오며2) Keunnun(큰눈)	177	Suan(구인) Suryejinmi(수려진미)	240 241	Highlandrice(Peru)
52 53					Suryejinmi(우러신미) Suwon382(수워382)		Highlandrice(Peru) Himinori
	Haepyeongchalbyeo(해평찰벼)	116	Keunseom(큰섬)	179		242	
54	Haiami(하이아미)	117	Malgeumi(말그미)	180	Taebaegbyeo(태백벼)	243	Hinohikari
55	Hanam(하남)	118	Mananbyeo(만나벼)	181	Undubyeo(운두벼)	244	Hitomebore
56	Hanareumbyeo(한아름벼)	119	Manchubyeo(만추벼)	182	Boseog(보석)	245	Hokuriku 147
57	Handeul(한들)	120	Mangeumbyeo(만금벼)	183	Unil(운일)	246	Hoshinishiki
58	Hangangchal 1(한강찰1)	121	Manhobyeo(만호벼)	184	Unkwangbyeo(운광벼)	247	Hosiaoba
59	Hangangchalbyeo(한갈찰벼)	122	Manjong(만정)	185	Unmi(운미)	248	Hosiyudaka
60	Hanmaeum(한마음)	123	Manmibyeo(만미벼)	186	Yeolbaeg(영백)	249	HP5546-1-2-2-3-3-1-1-1-
61	Mipum(미품)	124	Manna(만나)	187	Yangjobyeo(양조벼)	250	lpum(MNU)-36-2-
62	Hanseol(한설)	125	Manpungbyeo(만평벼)	188	Yeonganbyeo(영강벽)		GH1-2-10-1-2-3-2-1-3
		-	Manweolbyeo(만월벼)	189	Yeonghaebyeo(영해벼)	251	IR64

Appendix. Continued.

List	Lines	List	Lines	List	Lines	List	Lines
52	IR66158-38-3-2-1-1	310	Seonong11	368	북륙주(北陸酒)238	426	Unbong45(운봉45)
53	IR68144-2B-2-2-3-1	311	Seonong12	369	べごあおば(베고아오바)	427	Unbong46(운봉46)
54	IR71664-36-3-3-2	312	Seonong4	370	원씨대수(袁氏大穗)	428	Unbong47(운봉47)
55	IR71684-36-3-3-2	313	Seonong6	371	Gyehwa32(계화32)	429	Yeongdeog51(영덕51)
56	IR72	314	Seonong8	372	Iksan503(익산503)	430	Yeongdeog52(영덕52)
57	IR73103-B-1-1-2-1-K1	315	SESIA	373	Iksan507(익산507)	431	Kangweon7(강원7)
58	IR74371-54-1-1	316	SIANISILO	374	Iksan509익산(509)	432	Kangweon8(강원8)
59	IRAT13	317	SLG-1	375	Iksan512(익산512)	433	Kangweon9(강원9)
60	Jahyangna 861	318	SR21102-6-2-1-2-2	376	Iksan513(익산513)	434	Iksan527(익산527)
61	Jasmine85	319	SR23783-30-3-3-2-1	377	Jinbu39(진부39)	435	Iksan528(익산528)
62	Jeogtomi(적토미)	320	SR30071-3-7-23-6-2-1-1-1	378	Jinbu45(진부45)	436	Iksan529(익산529)
63	Jiangchuanlao-pinzhong-14	320	SWH100(52)-25-11-1	379	Jinbu46(진부46)	437	Iksan530(익산530)
55 54	Jinling-78-102	322	Takanari	380	Milyang232(밀양232)	438	Iksan531(익산531)
65	Kahei	323	Tetep	381	Milyang235(밀양235)	439	Iksan532(익산532)
56	Kanto208	323	TN-1	382	Milyang238(밀양238)	440	Iksan532(익산533)
		324		382		440	
57	Kinuhikari		Tung Ting Wan Hien 1		Sangju39(상주39)		Iksan534(익산534)
58	Kirara397	326	TW16	384	Mokwoo(목우)	442	Milyang253(밀양253)
59	Koshihikari	327	Ultra Merah	385	Suwon520(수원520)	443	Milyang254(밀양254)
70	Kusahonami	328	Unnam Agr. Inst. 1	386	Unbong43(운봉43)	444	Milyang255(밀양255)
71	LA1	329	Unnam Agr. Inst. 2	387	Unbong44(운봉44)	445	Milyang256(밀양256)
72	LGC-1	330	Unnam Agr. Inst. 3	388	Yeongdeog47(영덕47)	446	Milyang257(밀양257)
73	LGC-soft	331	Unnam Univ 2	389	Yeongdeog50(영덕50)	447	Milyang258(밀양258)
74	Majado	332	Wangchal	390	Cheolweon78(철원78)	448	Milyang259(밀양259)
75	Manjushree	333	Weld pally	391	Cheolweon79(철원79)	449	Milyang260(밀양260)
76	Midorinomochi	334	Yeonchal 1	392	Cheolweon80(철원80)	450	Milyang261(밀양261)
77	Milky Princess	335	YG 7	393	Gyehwa33(계화33)	451	Milyang262(밀양262)
78	Milky Queen	336	Yinguang	394	Iksan516(익산516)	452	Milyang263(밀양263)
79	Milyang21(밀양21)	337	YR21907Acp96-4-2-2	395	Iksan517(익산517)	453	Suwon538(수원538)
80	Mirenishiki	338	YR22156-B-B-B-4	396	Iksan518(익산518)	454	Suwon543(수원543)
81	Mochiminori	339	YR22156-B-B-B-45	397	Iksan519(익산519)	455	Suwon544(수원544)
82	Musashino 7	340	YR22627-26-2-2	398	Iksan520(익산520)	456	Yeongdeog53(영덕53)
33	N29	341	YR23517Acp79	399	Iksan521(익산521)	457	Yeongdeog54(영덕54)
34	Namjo	342	YR24099-B-B-71-1	400	Iksan522(익산522)	458	N22
85	NEP HUONG	343	YR24149Acp76-4-1-2	401	Iksan523(익산523)	459	Dular
86	Nipponbare	344	YR24353-60-1-1	402	Iksan524(익산524)	460	Gyeonggi3(경기3)
87	Nogmi	345	YR24982-9-1	403	Iksan525(익산525)	461	Gyehwa35(계화35)
88	Nohong	346	Yumechukusi	403	Jinbu48(진부48)	462	Milyang264(밀양264)
30 39	C	347		404		463	
	Norin PL9		Yun 60		Jinbu49(진부49)		Milyang265(밀양265)
90	NR10353-8-2-1	348	Yungengou 15	406	Milyang242(밀양242)	464	Milyang266(밀양266)
91	Odorokimochi	349	Yunhwae 422	407	Milyang243(밀양243)	465	Milyang267(밀양267)
92	OOBA	350	Yunjing 4	408	Milyang244(밀양244)	466	Milyang268(밀양268)
93	OPKI 2	351	Yuza 34	409	Milyang245(밀양245)	467	Milyang269(밀양269)
94	P 1401	352	Zhy-Lian-Ari-Yun-Nan	410	Milyang246(밀양246)	468	Milyang270(밀양270)
95	Padi Adongdumarat	353	Yunnongchamssal(운농참쌀)	411	Milyang247(밀양247)	469	Milyang271(밀양271)
96	PALLAGI 153	354	Gopumbyeo(고품벼)	412	Milyang248(밀양248)	470	Milyang272(밀양272)
97	Pampanga 7	355	Beulgeunchalbyeo(붉은찰벼)	413	Milyang249(밀양249)	471	Sangju45(상주45)
98	PERVOMAJSZKIJ	356	China collection 1	414	Milyang250(밀양250)	472	Sangju46(상주46)
99	PokhariliMashino	357	Geumtap(금탑)	415	Milyang251(밀양251)	473	Suwon546(수원546)
00	Princess Sari	358	Sharaebyeo red(샤레벼)	416	Milyang252(밀양252)	474	Suwon547(수원547)
)1	Radha-4	359	Sharaebyeo brown(샤레벼)	417	Sangju41(상주41)	475	Suwon548(수원548)
)2	Sakaichal 243	360	Wangchalbyeo(왕찰벼)	418	Sangju42(상주42)	476	Suwon549(수원549)
03	Sanghaehyanghyeolna	361	Yaecheonchalbyeo	419	Suwon527(수원527)	477	Suwon550(수원550)
04	Sanho	362	미산금(美山錦)	420	Suwon528(수원528)	478	Suwon551(수원551)
05	Sasanishiki	363	북륙사(北陸飼)209	421	Suwon529(수원529)	479	Suwon552(수원552)
06	Sasanishiki BL4	364	국육자((加生詞)209 서남나(西南糯)141	421	Suwon529(구원529) Suwon530(수원530)	479	Suw011552(구천552) Yeongdeog55(영덕55)
)7					Suwon530(구원530) Suwon531(수원531)	400	1 congueogos (3 403)
07	Satojiman	365	조자(朝紫) 노리(農林)1	423			
10	Seogeum(Seonong 13)	366	농림(農林)1	424	Suwon532 (수원532)		