DOI QR코드

DOI QR Code

국내 폐기물매립지 온실가스 감축을 위한 호기성 안정화 공법의 적용 가능성

Possibility of aerobic stabilization technology for reducing greenhouse gas emissions from landfills in Korea

  • 반종기 (안양대학교 환경에너지공학과) ;
  • 박진규 ((주)에코윌플러스) ;
  • 김경 (안양대학교 환경에너지공학과) ;
  • 윤석표 (세명대학교 바이오환경공학과) ;
  • 이남훈 (안양대학교 환경에너지공학과)
  • Ban, Jong-Ki (Department of Environmental and Energy Engineering, Anyang University) ;
  • Park, Jin-Kyu (Ecowillplus Co, Ltd.) ;
  • Kim, Kyung (Department of Environmental and Energy Engineering, Anyang University) ;
  • Yoon, Seok-Pyo (Department of Biological and Environmental Engineering, Semyung University) ;
  • Lee, Nam-Hoon (Department of Environmental and Energy Engineering, Anyang University)
  • 투고 : 2015.11.03
  • 심사 : 2015.11.23
  • 발행 : 2015.12.30

초록

본 연구에서는 국내 폐기물매립지에서 배출되는 온실가스를 저감하기 위한 호기성 안정화 기술의 적용 가능성을 평가하였다. 대상매립지는 국내 Y 매립지로 LandGEM 모델을 이용하여 메탄 배출량을 산정하였으며, 온실가스 저감량($CO_2eq$)은 혐기성 조건(베이스라인)과 호기성 조건에서의 배출량을 비교하여 산정하였다. 호기성 조건에서의 온실가스 저감은 폐기물매립지 내부로 공기를 주입 시 혐기성에서 호기성으로 전환되면서 부산물로 메탄대신 이산화탄소가 발생되기 때문이다. 평가결과 호기성 안정화 기술은 기존 혐기성 대비 86.6%의 온실가스를 감축하는 것으로 나타났으며, 이는 조기안정화를 통한 주변 환경오염 저감과 동시에 온실가스를 대폭 저감시킬 수 있는 것을 의미한다. 따라서 호기성 안정화 기술은 지속가능한 매립관점에서 보았을 때 국내 폐기물매립지에 적용할 수 있는 가장 적합한 기술 중 하나로 판단된다.

This study is to estimate the viability of aerobic stabilization technology for reducing greenhouse gas (GHG) emissions from landfills in Korea. In this study, methane emissions were estimated by applying Landfill gas estimation model (LandGEM) to Y landfill in Korea. By comparison of an anaerobic condition (baseline) and an aerobic condition, the amount of $CO_2eq$ savings was calculated. The $CO_2eq$ savings take place inside the landfilled waste during aeration due to the conversion of previously anaerobic biodegradation to aerobic processes, releasing mainly $CO_2$. It was demonstrated that 86.6% of the total GHG emissions occurring under anaerobic conditions could be reduced by aerobic stabilization technology. This means the aerobic stabilization technology could reduce environmental contamination through early stabilization and GHG emissions considerably at the same time. Therefore, the aerobic stabilization technology is one of the optimal technologies that could be employed to domestic landfill sites to achieve sustainable landfill.

키워드

참고문헌

  1. Ritzkowski, M. and Stegmann, R., "Landfill Aeration Worldwide: Concepts, Indications and Findings," Waste Manage., 32(7), pp. 1411-1419 (2012) https://doi.org/10.1016/j.wasman.2012.02.020
  2. Heimovaara, T. J., Cossu, R. and van der Sloot, H. A., "State of The Art and Perspectives for Sustainable Landfill", in Proceeding Sardinia 07, 11th International Waste Management and Landfill Symp. (2007).
  3. Scharff, H., Kok, B. and Krom, A. H., "The Role of Sustainable Landfill in Futrue Waste Management Systems", in Proceeding Sardinia 07, 11th International Waste Management and Landfill Symp. (2007).
  4. Cossu, R., "The Sustainable Landfilling Concept", in Proceedings Sardinia 05, 10th International Waste Management and Landfill Symp. (2005).
  5. EPA, "A landfill gas-to-energy project development handbook", EPA 430-B-96-0004 (1996).
  6. Rich, C., Gronow, J., Voulvoulis, N. : The potential for aeration of MSW landfills to accelerate completion, Waste Manage., 28(6), pp. 1039-1048. (2008). https://doi.org/10.1016/j.wasman.2007.03.022
  7. Heyer, K.-U., Hupe, K., Koop, A. and Stegmann, R., "Aerobic in situ stabilization of landfills: Long term experience and new developments", in Proceedings of SARDINIA 2007 - 11th International Waste Management and Landfill Symp. (2007).
  8. Eggleston, S., Buendia, L., Miwa, K., Ngara, T. amd Tanabe, K., "2006 IPCC guidelines for national greenhouse gas inventories". vol. 5, Hayama: Institute for Global Environmental Strategies (2006).
  9. EPA, "Landfill gas emissions model (LandGEM) version 3.02 user's guide", EPA 600/R-05/047 (2005).
  10. Liptay, K., Chanton, J., Czepiel, P. and Mosher, B., "Use of stable isotopes to determine methane oxidation in landfill cover soil", J. Geophys. Res.-Atmos., 103(D7), pp. 8243-8250. (1998). https://doi.org/10.1029/97JD02630
  11. Chanton, J. P., Powelson, D. K. and Green, R. B., "Methane oxidation in landfill cover soils, is a 10% default value reasonable?", J. Environ. Qual., 38(2), pp. 654-663. (2009). https://doi.org/10.2134/jeq2008.0221
  12. Jo, J. H., Lee, C. H., Lee, H. S. and Kim, K. K., "A Study on Appropriate Distribution for Utilization of Waste Resources and Bioenergy(I) - Focusing on Biogas", Korea Environment Institute (2014).
  13. Ximenes, F. A., Gardner, W. D. and Cowie, A. L., "The decomposition of wood products in landfills in Sydney", Waste Manage., 28(11), pp. 2344-2354. (2008). https://doi.org/10.1016/j.wasman.2007.11.006
  14. Park, J.-K., Lee, W.-J., Kim, Y.-J., Yoo, M.-H. and Lee, N.-H., "Assessment of greenhouse gas emission factors for wood wastes in a solid waste landfill", J. Korea Soc. Waste Manag., 31(8), pp. 811-819. (2014). https://doi.org/10.9786/kswm.2014.31.8.811
  15. Bogner, J. E. and Spokas, K., "Landfill CH4: Rates, fates and role in global carbon cycle", Chemosphere, 26(1-4), pp. 369-386. (1993). https://doi.org/10.1016/0045-6535(93)90432-5
  16. Park, J.-K., Kang, J.-H., Chong, Y.-G. and Lee, N.-H., "A study on mass balance of carbon in a solid waste landfill", J. Korea Soc. Waste Manag., 29(4), pp. 348-355. (2012).
  17. Ban, J.-K., Park, J.-K., Ahn, Y.-M., Yoon, S.-P. and Lee, N.-H., "Assessment of temperature variations in an aerated landfill", J. Korea Soc. Waste Manag., 32(4), pp. 335-341. (2015). https://doi.org/10.9786/kswm.2015.32.4.335
  18. Ritzkowski, M. and Stegmann, R., "Generating $CO_2$-credits through landfill in situ aeration", Waste Manage., 30(4), pp. 702-706. (2010). https://doi.org/10.1016/j.wasman.2009.11.014
  19. van Vossen, W., Heyer, K.-U. and Woelders, H., "Feasibility study of sustainable emission reduction at the existing landfills Wieringermeer and Kragge in the Netherlands: processes in the waste body and design and costs of enhancing measures (infiltration/aeration)", in Proceedings of SARDINIA 2009 -12th International Waste Management and Landfill Symp. (2009).
  20. Heyer, K.-U., Hupe, K., Ritzkowski, M. and Stegmann, R., "Pollutant release and pollutant reduction - impact of the aeration of landfills", Waste Manage., 25(4), pp. 353-359. (2005). https://doi.org/10.1016/j.wasman.2005.02.007
  21. Read, A. D., Hudgins, M. and Phillips, P., "Aerobic landfill test cells and their implications for sustainable waste disposal", Geogr. J., 167(3), pp. 235-247. (2001). https://doi.org/10.1111/1475-4959.00021
  22. Coccia, C. J. R., Gupta, R., Morris, J. and McCartney, J. S., "Municipal solid waste landfills as geothermal heat sources", Renew. Sust. Energ. Rev., 19, 463-474. (2013). https://doi.org/10.1016/j.rser.2012.07.028
  23. Grillo, R. J., Murray, J. S., Petersen, J. and Roy, K., "Landfill based geothermal system", in Proceedings of 3rd Global Waste Management Symp. (2012).

피인용 문헌

  1. Review on Impact of Landfill Levy of the Framework Act on Resource Circulation on Landfill Management in Korea vol.35, pp.4, 2018, https://doi.org/10.9786/kswm.2018.35.4.287