Comparative analysis of nitrite scavenging activity and anti-inflammation effects in the fruiting bodies of medicinal mushrooms

약용버섯류 자실체의 아질산염 소거능 및 항염증 효능 분석

  • Cho, Jae-Han (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Gang-Hyo (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Han, Jae-Gu (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Hyung-Don (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA) ;
  • Jhune, Chang-Sung (J&K Institute, The Korea Mushroom Journal)
  • 조재한 (국립원예특작과학원 버섯과) ;
  • 이강효 (국립원예특작과학원 버섯과) ;
  • 한재구 (국립원예특작과학원 버섯과) ;
  • 김형돈 (국립원예특작과학원 인삼특작이용팀) ;
  • 전창성 (월간버섯 J&K 버섯연구소)
  • Received : 2015.11.27
  • Accepted : 2015.12.28
  • Published : 2015.12.31


This study was carried out to compare the anti-inflammation effects of various fruiting body of Ganoderma species and Cordyceps militaris, Phelinus linteus extracts. We concentrated Ganoderma species and other medicinal mushrooms by extracting with ethanol. And We made it $100{\mu}g/ml$ concentration. As a result of nitrite scavenging activity, in the contrast to the positive control; Ascorbic acid was 25%, ASI 7080 of Ganoderma species was disappeared up to around 40%. And in the contrast to Ascorbic acid was 55%, ASI 7002 was 78.5% that was the highest anti-inflammation effect in the result of "No assay test". The Cordyceps militaris showed 75% and Hericium erinaceus showed 59.7% of anti-inflammation effect. As a result of the fungus yield control test of $TNF-{\alpha}$ through ELISA method to ASI 7002 of Ganoderma species that showed the highest anti-inflammation, it was reduced as same as LPS non-treatment. We extracted RNA from ASI 7002 Ganoderma species 10, 50, $100{\mu}g/ml$ concentration and LPS $10{\mu}g/ml$ of Raw 264.7 cell. And we tested the expression of iNOS, COX-2 and TNF-a that are kinds of inflammation gene after synthesizing RNA with cDNA. Finally we could find that iNOS, COX-2 and TNF-a were all controlled expression in the result of above experiment.

영지버섯과 기타 약용버섯류를 에탄올 용매로 추출하여 농축한 뒤, $100{\mu}g/ml$의 농도로 처리하여 아질산염 소거능을 실험한 결과 양성대조구인 Ascorbic acid는 25%의 소거능을 보이는데 반해 영지버섯 중 ASI 7080은 40%이상 소거하는 것으로 나타났으며, 그 다음으로는 상황버섯이 37%를 보였다. ASI 7002도 양성대조구보다 높게 나타났고, 그 이외의 다른 실험구는 양성대조구인 Ascorbic acid보다 낮은 아질산염 소거능을 보였다. NO assay 실험을 한 결과, 양성대조구로 쓰인 Ascorbic acid는 항염증 효능이 55%인데 반해 ASI 7002는 78.5%로 가장 높은 항염증 효능을 보였으며, 그 다음으로 ASI 7063이 67.5%를 보였다. 기타 약용버섯류인 동충하초는 71.2%로 가장 높게 나타났으며, 노루궁뎅이 버섯은 59.7%의 소거능을 보였다. 영지버섯 ASI 7002를 에탄올 용매로 추출하여 농축한 뒤, 농도별(10, 50, $100{\mu}g/ml$)로 처리하고 LPS $10{\mu}g/ml$ 처리한 RAW 264.7 cell 에서 RNA를 추출하여 cDNA를 합성한 후 Real-time PCR kit를 이용하여 염증 관련 유전자인 iNOS와 COX-2와 TNF-a의 primer를 Table 1과 같이 제작하였고, iNOS와 COX-2와 TNF-a의 발현정도를 본 결과 세 유전자 모두 농도 의존적으로 발현이 억제되는 것을 확인할 수 있었다.



  1. Jo SH, Jin GE, Yu Y, Choi JS, Yun HS, Yu YB, Park KM. 2010. Physiological activity of Flammulina velutipes sp. ethanol extract. ksms 8: 150-156.
  2. Um SN, Jin GE, Park KY, Yu YB, Park KM. 2010. Physiological activity and nutritional composition of Pleurotus species. Korean J. Food Sci. Technol. 42(1): 90-96.
  3. Qi Y, Zhao X, Lim YI, Park KY. 2013. Antioxidant and anticancer effects of edible and medicinal mushrooms. J. Korean Soc. Food Sci. Nutr. 42(5): 655-662.
  4. Kim SS, Kim YS. 1990. Korean mushrooms. Yupoong Publishing Co., Seoul, Korea. p 3.3.
  5. Kim HJ, Lee IS. 2004. Anti-mutagenic and cytotoxic effects of Korean wild mushrooms extracts. Korean J Food Sci Technol 36: 662-668.
  6. Choi SJ, Lee YS, Kim JK, Lim SS. 2010. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr 39: 1087-1096.
  7. Yang JH, Lin HC, Mau JL. 2002. Antioxidant properties of several commercial mushrooms. Food Chem 77: 229-235.
  8. Mus JL, Lin HC, Song SF. 2002. Antioxidant properties of several specialty mushrooms. Food Res Int 35: 519-526.
  9. Choi YH, Kim MJ, Lee HS, Yun BS, Hu C, Kwak SS. 1998. Antioxidative compounds in aerial parts of Potentilla fragariodes. Korean J Pharmacogn 29: 79-85.
  10. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C 1999. Antioxidant activity applyingimproved ABTS radical cation decolorization assay. FreeRadical Biology Medicine, 26: 1231-1237
  11. Gray JI, Dugan JLR 1975. Inhibition of N-nitrosamine formation in model food system. J Food Sci, 40: 981-985
  12. Issa AY, Volate SR, Wargovich MJ 2006. The role of phytochemicals in inhibition of cancer and inflammation new directions and perspectives. J Food Compos Anal, 19: 405-419
  13. Lee SH, Lim BO, Choue RW. 2004. Immunoregulatory Effects of Water Extracts of Scutellariae Radix in DSSInduced Inflammatory Bowel Disease Animal Model. Korean J Nutr. 37(6): 431-9.
  14. Politch JA, Tucker L, Bowman FP, Anderson DJ. 2007. Concentrations and significance of cytokines and other immunologic factors in semen of healthy fertile men. Hum Reprod. 22(11): 2928-35.
  15. Bogdan C. 2001. Nitric oxide and the immune response. Nat Immunol. 2(10): 907-16.
  16. Du C, Guan Q, Diao H, Yin Z, Jevnikar AM. 2006. Nitric oxide induces apoptosis in renal tubular epithelial cells through activation of caspase-8. Am J Physiol Renal Physiol. 290(5): 1044-54.