DOI QR코드

DOI QR Code

Effect of Sub-Minimal Inhibitory Concentrations of Antibiotics on Biofilm Formation and Coaggregation of Streptococci and Actinomycetes

  • Lee, So Yeon (Department of Oral Microbiology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University) ;
  • Lee, Si Young (Department of Oral Microbiology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University)
  • Received : 2015.11.11
  • Accepted : 2015.11.24
  • Published : 2015.12.31

Abstract

Minimal inhibitory concentration (MIC) is the lowest antibiotic concentration that inhibits the visible growth of bacteria. Sub-minimal inhibitory concentration (Sub-MIC) is defined as the concentration of an antimicrobial agent that does not have an effect on bacterial growth but can alter bacterial biochemistry, thus reducing bacterial virulence. Many studies have confirmed that sub-MICs of antibiotics can inhibit bacterial virulence factors. However, most studies were focused on Gram-negative bacteria, while few studies on the effect of sub-MICs of antibiotics on Gram-positive bacteria. In this study, we examined the influence of sub-MICs of doxycycline, tetracycline, penicillin and amoxicillin on biofilm formation and coaggregation of Streptococcus gordonii, Streptococcus mutans, Actinomyces naeslundii, and Actinomyces odontolyticus. In this study, incubation with sub-MIC of antibiotics had no effect on the biofilm formation of S. gordonii and A. naeslundii. However, S. mutans showed increased biofilm formation after incubation with sub-MIC amoxicillin and penicillin. Also, the biofilm formation of A. odontolyticus was increased after incubating with sub-MIC penicillin. Coaggregation of A. naeslundii with S. gordonii and A. odontolyticus was diminished by sub-MIC amoxicillin. These observations indicated that sub-MICs of antibiotics could affect variable virulence properties such as biofilm formation and coaggregation in Gram-positive oral bacteria.

Keywords

References

  1. Braga PC, Sasso MD, Sala MT. Sub-MIC concentrations of cefodizime interfere with various factors affecting bacterial virulence. J Antimicrob Chemother. 2000;45:15-25. doi: 10.1093/jac/45.1.15.
  2. Lorian V. Medical relevance of low concentrations of antibiotics. J Antimicrob Chemother. 1993;31:137-148. doi: 10.1093/jac/31.suppl_D.137.
  3. Fonseca AP, Extremina C, Fonseca AF, Sousa JC. Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol. 2004;53:903-910. doi: 10.1099/jmm.0.45637-0.
  4. Lorian V, Atkinson B. Abnormal forms of bacteria produced by antibiotics. Am J Clin Pathol. 1975;64:678-688. https://doi.org/10.1093/ajcp/64.5.678
  5. Raponi G, Keller N, Overbeek BP, Rozenberg-Arska M, van Kessel KP, Verhoef J. Enhanced phagocytosis of encapsulated Escherichia coli strains after exposure to sub-MICs of antibiotics is correlated to changes of the bacterial cell surface. Antimicrob Agents Chemother. 1990;34:332-336. https://doi.org/10.1128/AAC.34.2.332
  6. Chopra I, Linton A. The antibacterial effects of low concentrations of antibiotics. Adv Microb Physiol. 1986;28:211-259. doi: 10.1128/AAC.34.2.332.
  7. Cerca N, Martins S, Sillankorva S, Jefferson KK, Pier GB, Oliveira R, Azeredo J. Effects of growth in the presence of subinhibitory concentrations of dicloxacillin on Staphylococcus epidermidis and Staphylococcus haemolyticus biofilms. Appl Environ Microbiol. 2005;71:8677-8682. doi: 10.1128/AEM.71.12.8677-8682.2005.
  8. Gibbons RJ. Adherent interactions which may affect microbial ecology in the mouth. J Dent Res. 1984;63: 378-385. doi: 10.1177/00220345840630030401.
  9. Svanborg-Eden C, Sandberg T, Alestig K. Decrease in adhesion of Escherichia coli to human urinary tract epithelial cells in vitro by subinhibitory concentrations of ampicillin. Infection. 1986;6:121-124.
  10. Dong L, Tong Z, Linghu D, Lin Y, Tao R, Liu J, Tian Y, Ni L. Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation. Int J Antimicrob Agents. 2012;39:390-395. doi: 10.1016/j.ijantimicag.2012.01.009.
  11. Kolenbrander PE, London J. Adhere today, here tomorrow: Oral bacterial adherence. J Bacteriol. 1993;175:3247-3252. https://doi.org/10.1128/jb.175.11.3247-3252.1993
  12. Lee SY. Effects of chlorhexidine digluconate and hydrogen peroxide on Porphyromonas gingivalis hemin binding and coaggregation with oral streptococci. J Oral Sci. 2001;43:1-7. https://doi.org/10.2334/josnusd.43.1
  13. Gibbons RJ, Nygaard M. Interbacterial aggregation of plaque bacteria. Arch Oral Biol. 1970;15:1397-1400. https://doi.org/10.1016/0003-9969(70)90031-2
  14. Ledder RG, Timperley AS, Friswell MK, Macfarlane S, McBain AJ. Coaggregation between and among human intestinal and oral bacteria. FEMS Microbiol Ecol. 2008;66:630-636. doi: 10.1111/j.1574-6941.2008.00525.x.
  15. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, M07-A8, vol.29, no.2, 8th ed., CLSI. Wayne, PA, 2009.
  16. Park JH, Lee JK, Um HS, Chang BS, Lee SY. A periodontitis-associated multispecies model of an oral biofilm. J Periodontal Implant Sci. 2014;44:79-84. doi: 10.5051/jpis.2014.44.2.79.
  17. Lee SY, Kim YJ, Kim KK, Choe SJ. Effects of subinhibitory antibiotic concentrations on Porphyromonas gingivalis fibrinogen and hemin binding. Int J Oral Biol. 1999;24:121-127.
  18. Hamada N, Watanabe K, Sasakawa C, Yoshikawa M, Yoshimura F, Umemoto T. Construction and characterization of a fimA mutant of Porphyromonas gingivalis. Infect Immun. 1994;62:1696-1704.
  19. Smith RN, Andersen RN, Kolenbrander PE. Inhibition of intergeneric coaggregation among oral bacteria by cetylpyridinium chloride, chlorhexidine digluconate and octenidine dihydrochloride. J Periodontal Res. 1991;26: 422-428. doi: 10.1111/j.1600-0765.1991.tb01732.x.
  20. Cisar JO, Kolenbrander PE, McIntire FC. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun. 1979;24:742-752.
  21. Ana C. Okamoto, Elerson Gaetti-Jardim Jr., Victor E. Arana-Chavez, Mario J. Avila-Campos. Influence of subinhibitory concentrations of antimircrobials on hydrophobicity, adherence and ultra-structure of Fusobacterium nucleatum. Braz J Microbiol. 2002;33:178-184. https://doi.org/10.1590/S1517-83822002000200017
  22. Cai S, Simionato MR, Mayer MP, Novo NF, Zelante F. Effects of subinhibitory concentrations of chemical agents on hydrophobicity and in vitro adherence of Streptococcus mutans and Streptococcus sanguis. Caries Res. 1994;28:335-341. doi:10.1159/000261998.
  23. Frank KL, Reichert EJ, Piper KE, Patel R. In vitro effects of antimicrobial agents on planktonic and biofilm forms of Staphylococcus lugdunensis clinical isolates. Antimicrob Agents Chemother. 2007;51:888-895. doi: 10.1128/AAC.01052-06.
  24. Gibbons RJ, Etherden I. Comparative hydrophobicities of oral bacteria and their adherence to salivary pellicles. Infect Immun. 1983;41:1190-1196.
  25. Ellepola AN, Samaranayake LP. The effect of limited exposure to antimycotics on the relative cell-surface hydrophobicity and the adhesion of oral Candida albicans to buccal epithelial cells. Arch Oral Biol. 1998;43:879-887. doi:10.1016/S0003-9969(98)00064-8.
  26. Li T, Khah MK, Slavnic S, Johansson I, Stromberg N. Different type 1 fimbrial genes and tropisms of commensal and potentially pathogenic Actinomyces spp. with different salivary acidic proline-rich protein and statherin ligand specificities. Infect Immun. 2001;69:7224-7233. doi: 10.1128/IAI.69.12.7224-7233.2001.
  27. Hamada S, Amano A, Kimura S, Nakagawa I, Kawabata S, Morisaki I. The importance of fimbriae in the virulence and ecology of some oral bacteria. Oral Microbiol Immunol. 1998;13:129-138. doi: 10.1111/j.1399-302X.1998.tb00724.x.
  28. Peros WJ, Gibbons RJ. Influence of sublethal antibiotic concentrations on bacterial adherence to saliva-treated hydroxyapatite. Infect Immun. 1982;35:326-334.