DOI QR코드

DOI QR Code

Effects of Traditional Chinese Herbal Medicine Shengmai-San and Pyungwi-San on Gastrointestinal Motility in Mice

생맥산 및 평위산 추출물의 위장관 운동 조절 효능에 관한 연구

  • Lee, Min Cheol (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Park, Jin Ryeong (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Shim, Ji Hwan (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Ahn, Tae Seok (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Kim, Byung Joo (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University)
  • 이민철 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 박진령 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 심지환 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 안태석 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 김병주 (부산대학교 한의학전문대학원 양생기능의학부)
  • Received : 2015.10.07
  • Accepted : 2015.11.12
  • Published : 2015.12.30

Abstract

Objectives: The purpose of this study was to investigate the effects of Shengmai-san and Pyungwi-san, a herbal product used in traditional Chinese medicine, on gastrointestinal (GI) motility in mice. Methods: The in vivo effects of Shengmai-san and Pyungwi-san on GI motility were investigated by measuring the intestinal transit rates (ITRs) using Evans blue in normal mice and in mice with experimentally induced GI motility dysfunction (GMD). GMD was induced by injecting acetic acid or streptozotocin intraperitoneally. Results: In normal Institute of Cancer Research mice, ITRs were significantly and dose-dependently increased by Shengmaisan (0.01~1 g/kg) and Pyungwi-san (0.01~1 g/kg). The ITRs of acetic acid induced peritoneal irritation model and streptozotocin-induced diabetic model mice were significantly reduced compared to normal mice, and these reductions were significantly and dose-dependently inhibited by Shengmai-san (0.01~1 g/kg) and Pyungwi-san (0.01~1 g/kg). Conclusions: These results suggest that both Shengmai-san and Pyungwi-san are a good candidate for the development of a prokinetic agent that may prevent or alleviate GMD.

Keywords

References

  1. Cheng JT. Review: drug therapy in Chinese traditional medicine. J Clin Pharmacol. 2000 ; 40(5) : 445-50. https://doi.org/10.1177/00912700022009198
  2. Xu N, Qiu C, Wang W, Wang Y, Chai C, Yan Y, et al. HPLC/MS/MS for quantification of two types of neurotransmitters in rat brain and application: myocardial ischemia and protection of Sheng-Mai-San. J Pharm Biomed Anal. 2011 ; 55(1) : 101-8. https://doi.org/10.1016/j.jpba.2010.12.015
  3. Nishida H, Kushida M, Nakajima Y, Ogawa Y, Tatewaki N, Sato S, et al. Amyloid-$\beta$-induced cytotoxicity of PC- 12 cell was attenuated by Shengmai-san through redox regulation and outgrowth induction. J Pharmacol Sci. 2007 ; 104(1) : 73-81. https://doi.org/10.1254/jphs.FP0070100
  4. Wang NL, Chang CK, Liou YL, Lin CL, Lin MT. Shengmai san, a Chinese herbal medicine protects against rat heat stroke by reducing inflammatory cytokines and nitric oxide formation. J Pharmacol Sci. 2005 ; 98(1) : 1-7. https://doi.org/10.1254/jphs.FP0050018
  5. Riedlinger JE, Tan PW, Lu W. Ping wei san, a Chinese medicine for gastrointestinal disorders. Ann Pharmacother. 2001 ; 35(2) : 228-35. https://doi.org/10.1345/aph.10122
  6. Lee HS, Moon JY. Scavenging property of Pyungwi-san herbalacupuncture solution on ROS and RNS. Korean J Orient Physiol Pathol. 2007 ; 21(1) : 165-70.
  7. Ji HC, Baek TH. A comparative study of Pyeongwi-san, Ijintang and Pyeongjintang extracts on indomethacin induced gastric mucosal lesions in mice. J Korean Orient Med. 2011 ; 32(2) : 102-17.
  8. Shin IS, Kim JH, Ha HK, Huang DS, Huh JI, Shin HK. Study on safety of Pyungwi-san in Sprague-Dawley rats. Korean J Orient Physiol Pathol. 2010 ; 24(3) : 426-9.
  9. Bytzer P, Talley NJ, Leemon M, Young LJ, Jones MP, Horowitz M. Prevalence of gastrointestinal symptoms associated with diabetes mellitus: a population-based survey of 15,000 adults. Arch Intern Med. 2001 ; 161(16) : 1989-96. https://doi.org/10.1001/archinte.161.16.1989
  10. Maleki D, Locke GR 3rd, Camilleri M, Zinsmeister AR, Yawn BP, Leibson C, et al. Gastrointestinal tract symptoms among persons with diabetes mellitus in the community. Arch Intern Med. 2000 ; 160(18) : 2808-16. https://doi.org/10.1001/archinte.160.18.2808
  11. Camilleri M. Clinical practice. Diabetic gastroparesis. N Engl J Med. 2007 ; 356(8) : 820-9. https://doi.org/10.1056/NEJMcp062614
  12. Intagliata N, Koch KL. Gastroparesis in type 2 diabetes mellitus: prevalence, etiology, diagnosis, and treatment. Curr Gastroenterol Rep. 2007 ; 9(4) : 270-9. https://doi.org/10.1007/s11894-007-0030-3
  13. Chen JD, Lin Z, Pan J, McCallum RW. Abnormal gastric myoelectrical activity and delayed gastric emptying in patients with symptoms suggestive of gastroparesis. Dig Dis Sci. 1996 ; 41(8) : 1538-45. https://doi.org/10.1007/BF02087897
  14. Hasler WL, Soudah HC, Dulai G, Owyang C. Mediation of hyperglycemia-evoked gastric slow-wave dysrhythmias by endogenous prostaglandins. Gastroenterology. 1995 ; 108(3) : 727-36. https://doi.org/10.1016/0016-5085(95)90445-X
  15. Jebbink RJ, Samsom M, Bruijs PP, Bravenboer B, Akkermans LM, Vanberge Henegouwen GP, et al. Hyperglycemia induces abnormalities of gastric myoelectrical activity in patients with type I diabetes mellitus. Gastroenterology. 1994 ; 107(5) : 1390-7. https://doi.org/10.1016/0016-5085(94)90541-X
  16. Sellin JH, Hart R. Glucose malabsorption associated with rapid intestinal transit. Am J Gastroenterol. 1992 ; 87(5) : 584-9.
  17. Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 1994 ; 480(Pt 1) : 91-7. https://doi.org/10.1113/jphysiol.1994.sp020343
  18. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995 ; 373(6512) : 347-9. https://doi.org/10.1038/373347a0
  19. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996 ; 111(2) : 492-515. https://doi.org/10.1053/gast.1996.v111.pm8690216
  20. Kim JN, Song HJ, Lim B, Kwon YK, Kim BJ. Modulation of pacemaker potentials by pyungwi-san in interstitial cells of cajal from murine small intestine: pyungwi-san and interstitial cells of cajal. J Pharmacopuncture. 2013 ; 16(1) : 43-9. https://doi.org/10.3831/KPI.2013.16.003
  21. Kim BJ. Shengmaisan regulates pacemaker potentials in interstitial cells of cajal in mice. J Pharmacopuncture. 2013 ; 16(4) : 36-42. https://doi.org/10.3831/KPI.2013.16.025
  22. Kim BJ, Kim HW, Lee GS, Choi S, Jun JY, So I, et al. Poncirus trifoliate fruit modulates pacemaker activity in interstitial cells of Cajal from the murine small intestine. J Ethnopharmacol. 2013 ; 149(3) : 668-75. https://doi.org/10.1016/j.jep.2013.07.017
  23. Lee HT, Seo EK, Chung SJ, Shim CK. Prokinetic activity of an aqueous extract from dried immature fruit of Poncirus trifoliata (L.) Raf. J Ethnopharmacol. 2005 ; 102(2) : 131-6. https://doi.org/10.1016/j.jep.2005.05.052
  24. Lyu JH, Lee HT. Effects of dried Citrus unshiu peels on gastrointestinal motility in rodents. Arch Pharm Res. 2013 ; 36(5) : 641-8. https://doi.org/10.1007/s12272-013-0080-z
  25. Friese N, Chevalier E, Angel F, Pascaud X, Junien JL, Dahl SG, et al. Reversal by kappa-agonists of peritoneal irritation induced ileus and visceral pain in rats. Life Sci. 1997 ; 60(9) : 625-34. https://doi.org/10.1016/S0024-3205(96)00647-9
  26. Kim BJ, Nam JH, Kim KH, Joo M, Ha TS, Weon KY, et al. Characteristics of gintonin-mediated membrane depolarization of pacemaker activity in cultured interstitial cells of Cajal. Cell Physiol Biochem. 2014 ; 34(3) : 873-90. https://doi.org/10.1159/000366306
  27. Furukawa Y, Shiga Y, Hanyu N, Hashimoto Y, Mukai H, Nishikawa K, et al. Effect of Chinese herbal medicine on gastrointestinal motility and bowel obstruction. Jpn J Gastroenterol Surg. 1995 ; 28(4) : 956-60. https://doi.org/10.5833/jjgs.28.956
  28. Hashimoto K, Satoh K, Kase Y, Ishige A, Kubo M, Sasaki H, et al. Modulatory effect of aliphatic acid amides from Zanthoxylum piperitum on isolated gastrointestinal tract. Planta Med. 2001 ; 67(2) : 179-81. https://doi.org/10.1055/s-2001-11513
  29. Ahn TS, Kim DG, Hong NR, Park HS, Kim H, Ha KT, et al. Effects of Schisandra chinensis extract on gastrointestinal motility in mice.J Ethnopharmacol. 2015; 169: 163-9. https://doi.org/10.1016/j.jep.2015.03.071
  30. Rhyu MR, Kim EY, Yoon BK, Lee YJ, Chen SN. Aqueous extract of Schizandra chinensis fruit causes endotheliumdependent and -independent relaxation of isolated rat thoracic aorta. Phytomedicine. 2006 ; 13(9-10) : 651-7. https://doi.org/10.1016/j.phymed.2006.02.003
  31. Hwang MW, Ahn TS, Hong NR, Jeong HS, Jung MH, Ha KT, et al. Effects of traditional Chinese herbal medicine San-Huang- Xie-Xin-Tang on gastrointestinal motility in mice. World J Gastroenterol. 2015 ; 21(4) : 1117-24. https://doi.org/10.3748/wjg.v21.i4.1117
  32. Kim BJ, Kim H, Lee GS, So I, Kim SJ. Effects of San-Huang- Xie-Xin-tang, a traditional Chinese prescription for clearing away heat and toxin, on the pacemaker activities of interstitial cells of Cajal from the murine small intestine. J Ethnopharmacol. 2014 ; 155(1) : 744-52. https://doi.org/10.1016/j.jep.2014.06.024
  33. Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, et al. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology. 2005 ; 129(5) : 1504-17. https://doi.org/10.1053/j.gastro.2005.08.016
  34. Hwang SJ, Blair PJ, Britton FC, O'Driscoll KE, Hennig G, Bayguinov YR, et al. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol. 2009 ; 587(Pt20) : 4887-904. https://doi.org/10.1113/jphysiol.2009.176198
  35. Schvarcz E, Palmer M, Ingberg CM, Aman J, Berne C. Increased prevalence of upper gastrointestinal symptoms in long-term type 1 diabetes mellitus. Diabet Med. 1996 ; 12(5) : 478-81.
  36. Bytzer P, Talley NJ, Hammer J, Young LJ, Jones MP, Horowitz M. GI symptoms in diabetes mellitus are associated with both poor glycemic control and diabetic complications. Am J Gastroenterol. 2002 ; 97(3) : 604-11. https://doi.org/10.1111/j.1572-0241.2002.05537.x
  37. Forrest A, Huizinga JD, Wang XY, Liu LW, Parsons M. Increase in stretch-induced rhythmic motor activity in the diabetic rat colon is associated with loss of ICC of the submuscular plexus. Am J Physiol Gastrointest Liver Physiol. 2008 ; 294(1) : G315-26. https://doi.org/10.1152/ajpgi.00196.2007
  38. Yamamoto T, Watabe K, Nakahara M, Ogiyama H, Kiyohara T, Tsutsui S, et al. Disturbed gastrointestinal motility and decreased interstitial cells of Cajal in diabetic db/db mice. J Gastroenterol Hepatol. 2008 ; 23(4) : 660-7. https://doi.org/10.1111/j.1440-1746.2008.05326.x

Cited by

  1. 오적산합생맥산(五積散合生脈散)으로 호전된 위식도 역류에 의한 만성기침 환자 3례 vol.38, pp.4, 2015, https://doi.org/10.22246/jikm.2017.38.4.520
  2. 생맥산가미방 추출물이 멜라닌 생합성 저해 효과와 SOD 활성에 미치는 연구 vol.33, pp.5, 2015, https://doi.org/10.15188/kjopp.2019.10.33.5.267
  3. 최근 10년간 한방비만학회지의 연구동향 분석: 2010-2019년 한방비만학회지 게재논문을 중심으로 vol.20, pp.2, 2015, https://doi.org/10.15429/jkomor.2020.20.2.149