DOI QR코드

DOI QR Code

Occurrence of Arsenic, Strontium, and Selenium in Drinking Water in Kyungpook Province, Korea, in Relation to Geologic Formations

경북지역의 먹는 물에서 지질에 따른 비소, 스트론튬, 셀레늄 검출 특성

  • Lee, Heageun (GyeongSangBuk-Do Goverment Public Institute of Health & Environment) ;
  • Cha, Sangdeok (GyeongSangBuk-Do Goverment Public Institute of Health & Environment) ;
  • Choi, Jeonhak (Department of Environment Engineering, Catholic University of Pusan) ;
  • Kim, Younghun (Department of Environmental Engineering, Andong National University)
  • Received : 2014.09.30
  • Accepted : 2014.12.17
  • Published : 2015.01.01

Abstract

As the water supply system has been installed over the country, the management of drinking water could be easier and controlled by experts. This helps to supply safe water to public. However, in rural area, small scale water treatment systems or groundwater haves been used as drinking water supplier. The drinking water including groundwater contains various contaminants. Private or small scale water treatment system can be contaminated with heavy metals such as arsenic, selenium and strontium which are usually originated from natural source. Arsenic, selenium and strontium have been determined from the goundwater, small scale water treatment system in the Kyungpook area. The results have been compared with the Korean and international standards. The results were analyzed on the geological characteristics of the area. Among the total of 1,412 samples, 76 samples showed higher concentration of arsenic than WHO guideline and the Korean drinking water standard. Total 4 samples had higher contents of selenium than WHO guideline which was $10{\mu}g/L$. In the analysis of geological characteristics, arsenic was highly released from a few area and which are in order of biotite granodiorite > biotite granite > daegu formation. Selenium has been highly released from biotite granite > black shale > diluvium.

상수도 보급율이 계속적으로 높아지면서 먹는 물의 관리가 대형화 및 전문화되고 있어 안전한 물 공급에 유리한 면이 많다. 그러나 농어촌지역의 경우 소규모 상수도 및 지하수, 샘물 등을 먹는 물로 이용하는 경우가 여전히 많다. 지하수를 포함한 먹는 물에는 다양한 오염물질이 포함되어 있다. 개별 또는 소규모 정수시설의 경우 비소를 포함하는 중금속에 의해 오염되어 있을 가능성을 배제할 수 없고 대부분 자연기원인 셀레늄, 스트론튬 등의 미량원소의 농도도 높게 검출되는 경우가 있다. 본 연구에서는 경북중북부지역의 지하수, 소규모 먹는 물 공급시설을 대상으로 비소, 셀레늄, 스트론튬의 농도를 측정하였으며 오염 정도를 국내외 환경기준과 비교하고 시료를 채취한 지역의 지질적 특성과도 비교 분석하였다. 비소의 경우 총 1,412개의 시료 가운데 WHO 및 국내의 먹는 물 기준을 초과한 시료는 76개이며 비율은 5.38%이다. 셀레늄의 경우 총 1,283개의 시료 가운데 WHO의 권고기준을 초과한 시료는 4개이며 비율은 0.31%이다. 지질적 특성비교에서 비소의 경우 흑운모화강섬록암 > 흑운모 화강암 > 대구층에서 높게 검출되었으며, 셀레늄의 경우 흑운모화강암 > 흑색혈암 > 홍적층의 지질의 지역에서 높게 검출되었다.

Keywords

References

  1. Ahn, J.S., Ko, K.S., Lee, J.S. and Kim, J.Y. (2005), Characteristics of Natural Arsenic Contamination in Groundwater and Its Occureences, Econ. Environ. Geol., Vol. 38, No. 5, pp. 547-61 (in Korean).
  2. Alfred A. Duker, E.J.M Carranza and Martin Hale (2005), Arsenic geochemistry and health, Environment International, Vol. 31, pp. 631-641. https://doi.org/10.1016/j.envint.2004.10.020
  3. B.A. Wiegnad and L. Schwendenmann (2013), Determination of Sr and Ca sources in small tropical catchments(La Selva, Costa Rica) - A comparison of Sr and Ca isotopes", Journal of Hydrology, Vol. 488, pp. 110-117. https://doi.org/10.1016/j.jhydrol.2013.02.044
  4. Carignan J. and Wen H. (2007), Scaling NIST SRM 3149 for Se isotope analysis and isotopic variations of natural samples, Chemical Geology, Vol. 242, pp. 347-350. https://doi.org/10.1016/j.chemgeo.2007.03.020
  5. Choo, C.O., Lee, J.K., Lee, C.J., Park, K.H. and Jeong, G.C. (2009), Origin of B, Br and Sr in Groundwater from Bukahnmyeon, Yeongcheon, Gyeongbuk Province, with Emphasis on Hydrochemistry, The Journal of Engineering Geology, Vol 19, No. 2, pp. 235-250 (in Korean).
  6. Chon, C.M., Kim, K.Y., Koh, D.C. and Choi, M.J. (2009), Arsenic Distribution and Solubility in Groundwater of Okcheon Area, J. Miner. Soc. Korea, Vol. 22, No. 4, pp. 331-342 (in Korean).
  7. Haque S., Ji J. and Johannesson K.H. (2008), Evaluating mobilization and transport of arsenic in sediments and groundwaters of Aquia aquifer, Maryland, USA, Journal of Contaminant Hydrology, Vol. 99, pp. 68-84. https://doi.org/10.1016/j.jconhyd.2008.03.003
  8. Hossain M.M. and Piantanakulchai M. (2013), Groundwater arsenic contamination risk prediction using GIS and classification tree method, Engineering Geology, Vol. 156, pp. 37-45. https://doi.org/10.1016/j.enggeo.2013.01.007
  9. Islam A.B.M.R., Maity J.P., Bundschuh J., Chen C., Bhowmik B.K. and Tazaki K. (2013), "Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment", Journal of Hazardous Materials, Vol. 262, pp. 989-996. https://doi.org/10.1016/j.jhazmat.2012.07.022
  10. Kim, M.J. (2005), Aresenic Dissolution and Speciation in Groundwater: review paper, Econ. Environ. Geol., Vol. 38, No. 5, pp. 587-597.
  11. Kim, S.S., Min, J.H., Baik, M.H. and Kim, G.N. (2012), Solubilities and Major Species of Selenium and Technetium in the KURT Groundwater Conditions, Journal of the Korean Radioactive Waste Society, Vol. 10, No. 1, pp. 13-19 (in Korean). https://doi.org/10.7733/jkrws.2012.10.1.013
  12. Ng J.C., Wang J. and Shraim A. (2003), A global health problem caused by arsenic from natural sources, Chemosphere Vol. 52, pp. 1353-1359. https://doi.org/10.1016/S0045-6535(03)00470-3
  13. Paces J.b. and Wurster F.C. (2014), Natural uranium and strontium isotope tracers of water sources and surface water-groundwater interactions in arid wetlands - Pahranagat Valley, Nevada, USA, Journal of Hydrology, Vol. 517, pp. 213-225. https://doi.org/10.1016/j.jhydrol.2014.05.011
  14. Rouxel O., Ludden J., Carignan J., Marin L. and Fouquet Y. (2002), Natural variations of Se isotopic composition determined by hydride generation multiple collector inductively coupled plasma mass spectrometry, Geochimica et Cosmochima Acta, Vol. 66, No. 18, pp. 3191-3199. https://doi.org/10.1016/S0016-7037(02)00918-3
  15. Smedley P.L. and Kinniburgh D.G. (2008), A review of the source, behaviour and distribution of arsenic in natural waters, Applied Geochemistry, Vol. 17, pp. 517-568.
  16. Wen H. and Carignan J. (2007), Reviews on atmospheric selenium: Emissions, speciation and fate, Atmospheric Environment, Vol. 41, pp. 7151-7165. https://doi.org/10.1016/j.atmosenv.2007.07.035
  17. Xie X., Wang Y., Ellism A., Sum C., Li J., Li M. and Duan M. (2013), Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: A case study in high arsenic aquifer systems of the Datong basin, northern China, Journal of Hydrology, Vol. 47, pp. 87-96.
  18. Yun, U., Cho, B.W. and Sung, K.Y. (2004), Occurence and Species of Aresenic in the Groundwater of Ulsan Area, Econ. Environ. Geol., Vol. 37, No. 6, pp. 657-667.