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Abstract – Obtaining the parameters for PID controllers based on limit cycle information for the 
process in a relay controlled feedback loop has become an accepted practical procedure. If the form of 
the plant transfer function is known, exact expressions for the limit cycle frequency and amplitude can 
be derived so that their measurements, assumed error free, can be used to calculate the true parameter 
value. In the literature, parameter estimation for an assumed form of the plant transfer function has 
generally been considered for disturbance free cases, except a recently published work of the author. In 
this paper additional simulation results are reported on exact parameter estimation from relay auto-
tuning under static load disturbances. 
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1. Introduction 
 
Using relay feedback control for parameter estimation 

of an assumed form of plant transfer function has become 
an accepted practical procedure. For literature on relay 
feedback identification, interested readers can refer to [1] 
and literature in there.  

In the past studies, it is generally assumed that there are 
no load disturbances into the relay feedback control system 
during parameter estimation procedure. However, load 
disturbances are quite frequently encountered in practical 
situations. Therefore, use of the expressions obtained for 
load disturbance free situations may lead to significant 
errors in the estimates under static load disturbances. Kaya 
[1] gave the conditions for a limit cycle to occur in a relay 
feedback control under static load disturbances and showed 
that the expressions obtained from the A-Function Method 
[2] for disturbance free cases can simply be improved by 
the inclusion of the term dG(0) so that they can be used for 
parameter estimation under static load disturbances. There, 
the expressions for a specific case of the stable first order 
plus dead time (FOPDT) transfer function were given. 
Later, Kaya and Atherton [3] provided expressions for 
unstable FOPDT transfer function too. Expressions for 
stable and unstable second order plus dead time (SOPDT) 
transfer functions were also given. However, the effect of 
disturbances on parameter estimations was not investigated. 

The aim of this paper is twofold: First, a simpler 
approach for estimating the plant transfer function gain 
and disturbance magnitude is given. Second, simulation 
examples are provided to illustrate that if the disturbance 
exists during parameter estimation procedure and the 

effect of static load disturbance is not considered in the 
expressions then large errors in estimates must be expected. 

 
 

2. Parameter Estimation under Static Load 
Disturbances 

 
Consider the relay feedback control system under static 

load disturbances given in Fig. 1. The plant is assumed to 
have one of the following transfer function forms 
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When the A-Function method is used for parameter 

estimation, four equations can be obtained [1]. These four 
equations are sufficient to identify the unknown parameters 
K, T and L for the stable and unstable FOPDT transfer 
functions and the disturbance magnitude, d. However, 
initial guesses must be provided for these unknowns to 
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Fig. 1. Relay control under static load disturbances 
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solve the obtained nonlinear equations, simultaneously. 
Furthermore, for the stable and unstable SOPDT transfer 
functions, one more equation is needed for five unknowns, 
namely K, 1T , 2T , L and d. Therefore, to reduce the 
number of unknowns and make the solution easier, Fourier 
analysis can be used to identify K and d. Kaya [1] 
suggested two approaches for this purpose. In the first 
approach, it was assumed that K can be obtained from 
measurements on the relay and plant outputs in conjunction 
with Fourier analysis, before the disturbance enters the 
system. Then, d was found from Fourier analysis; as the 
steady-state occurs with the disturbance exists. This 
approach may not be practical. In the second approach, the 
result from [4] was adopted to find d, where an extra relay 
test with equal heights was performed. Then, Fourier 
analysis under steady-state operation was used to estimate 
K. Clearly, the disadvantage of this approach is to require a 
second relay test, which is time consuming. 

Here, it is assumed that the steady-state gain can be 
calculated from  
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where ( )c t  and ( )y t′  are the plant output and input, 
respectively, and P is the period of the limit cycle. 

Once steady-state operation occurs, the disturbance 
magnitude can be calculated from 
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Therefore, with K and d found, respectively, from eqns. 

(5) and (6), the expressions and procedure provided in 
[3] can be used to identify the remaining parameters of 
any plant transfer functions given in eqns. (1)-(4). For 
convenience, expressions to be used in parameter 
estimations are given in the appendix. Interested readers 

can refer to [1] to see the procedure for obtaining these 
equations. 

 
 

3. Simulation Examples 
 
In the first example, for different static-load disturbance 

magnitudes, the parameters of the FOPDT plant transfer 
function are computed using the expressions which is, 
respectively, not taking the effect of load disturbance into 
account [1] and taking the effect of load disturbance into 
account [3]. Hence, it is shown that large errors in the 
estimates are resulted when the effect of load disturbance is 
not considered in the expressions. In the second example, 
high order stable and unstable plant transfer functions 
under static load disturbances are modeled by the stable 
FODPT or SOPDT and unstable FOPDT or SOPDT to 
show that the models obtained are satisfactory in the sense 
of controller design in most cases. 

 
Example 1: Consider an FOPDT plant transfer function 

of e-10s/(30s +1) with the normalized dead time ratio 
L /T = 0.33. For different load disturbance magnitudes, 
relay heights and hysteresis values, relay feedback tests 
were carried out. Table 1 lists measured limit cycle 
parameters and estimated parameters when the expressions 
given in [1] which do not take the effect of load dis-
turbance into consideration, are used.  

Several conclusions can be derived from Table 1. First, 
as the disturbance magnitudes gets larger the error in the 
estimates gets larger too, which is expected. Second, 
increasing the bias in the relay increases the error in the 
estimates. Third, using a relay with hysteresis always 
results in slightly less accurate estimations for the time 
delay. This holds also for the time delay estimates when the 
bias in the relay is relatively small. However, when the bias 
in the relay is increased, a relay with hysteresis gives 
slightly better estimates for the time delay. In the table, 
exact solutions are obtained for the gain K for all cases, as 

Table 1. Identification for example 1 ( / 0.333L T = ) 

h1=0.7, h2=-0.5 h1=0.7, h2=-0.3 
Δ d 

Limit cycle parameters K T L Limit cycle parameters K T L 

0.05 
0.173ω = 1 14.712tΔ =  

max 0.213a = min 0.128a = −  1.000 29.284 9.435 
0.153ω = 1 12.707tΔ =  

max 0.213a = min 0.071a = −  1.000 28.080 8.820

0.10 
0.169ω = 1 13.977tΔ =  

max 0.227a = min 0.113a = −  1.000 28.030 8.570 
0.140ω = 1 12.054tΔ =  

max 0.227a = min 0.057a = −  1.000 25.068 7.5030.0 

0.15 
0.161ω = 1 13.312tΔ =  

max 0.241a = min 0.099a = −  1.000 26.153 7.511 
0.125ω = 1 11.464tΔ =  

max 0.241a = min 0.043a = −  1.000 20.821 6.398

0.05 
0.117ω = 1 21.360tΔ =  

max 0.284a = min 0.199a = −  1.000 29.154 9.378 
0.093ω = 1 19.512tΔ =  

max 0.284a = min 0.143a = −  1.000 27.626 8.880

0.10 
0.113ω = 1 20.248tΔ =  

max 0.298a = min 0.188a = −  1.000 27.659 8.481 
0.082ω = 1 18.470tΔ =  

max 0.298a = min 0.128a = −  1.000 24.016 8.0060.1 

0.15 
0.107ω = 1 19.250tΔ =  

max 0.313a = min 0.171a = −  1.000 25.402 7.504 
0.067ω = 1 17.534tΔ =  

max 0.313a = min 0.114a = −  1.000 19.829 7.834
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eqn. (5) given in this paper is used for the identification. 
Of course, using the expressions given in [3], which are 
provided in the appendix, in conjunction with eqns. (5) 
and (6) resulted in exact solutions to three significant for 
all cases. It should also be noted that the disturbance 
magnitude d was estimated from eqn. (6) exactly to three 
significant to use in estimations. 

Now consider an FOPDT plant transfer function of   
e-5s/(30s +1) with the normalized dead time ratio L /T =  
0.167. Similar results as in the previous case are listed in 
Table 2. Conclusions drawn from Table 1 are confirmed. 
However, comparing the estimates in the parameters for 
two cases, namely L /T = 0.333 and L /T = 0.167, it is 
observed that results are now slightly worse than the 
previous case. When the expressions considering the 
effect of load disturbances given in [3], also provided in 
the appendix, are used, again exact solutions to three 
significant are obtained. 

 
Example 2: In this example several typical process 

transfer functions are considered to show the effectiveness 
of the method in modelling higher order process transfer 
functions for controller design. Table 3 lists some typical 
process transfer functions, the measured limit cycle 
parameters and the corresponding models found using a 
FOPDT or SOPDT model. Relay parameters used for 

stable processes were h1=1, h2= -0.8 and 0.2Δ = . For 
processes with complex and unstable poles, case c and d, 
the relay parameters were selected as h1=1, h2= -1 and 

0Δ = . The disturbance magnitude in the simulation was 
put at d = 0.1 and it was estimated exactly to three 
significant, using eqn. (6) for all cases. The Nyquist curves 
of the actual plant transfer functions, the FOPDT and 
SOPDT model transfer functions are shown in Figs. 2-5, 
which illustrates good matching, where the phase near to 
180o, hence showing that the method can give reasonable 

Table 2. Identification for example 1 ( / 0.167L T = ) 
h1=0.7, h2=-0.5 h1=0.7, h2=-0.3 Δ d 

Limit cycle parameters K T L Limit cycle parameters K T L 

0.05 
0.323ω = 1 7.643tΔ =

max 0.115a = min 0.069a = −  
1.000 29.229 4.422

0.275ω =  1 6.497tΔ =  

max 0.115a = min 0.038a = −  
1.00

0 
27.843 3.819 

0.10 
0.310ω = 1 7.219tΔ =

max 0.123a = min 0.061a = −  1.000 27.864 3.552
0.247ω =  1 6.130tΔ =  

max 0.123a = min 0.031a = −  
1.00

0 
24.287 2.572 0.0 

0.15 
0.294ω = 1 6.839tΔ =

max 0.131a = min 0.054a = −  
1.000 25.782 2.519

0.212ω = 1 5.802tΔ =

max 0.131a = min 0.023a = −  
1.00

0 
18.851 1.694 

0.05 
0.163ω = 1 14.887tΔ =

max 0.200a = min 0.154a = −  
1.000 29.131 4.359

0.121ω =  1 13.849tΔ =  

max 0.200a = min 0.123a = −  
1.00

0 
27.475 3.889 

0.10 
0.156ω = 1 14.037tΔ =

max 0.208a = min 0.146a = −  1.000 27.580 3.451
0.104ω = 1 13.047tΔ =

max 0.208a = min 0.115a = −  
1.00

0 
23.469 3.135 0.1 

0.15 
0.147ω = 1 13.280tΔ =

max 0.215a = min 0.138a = −  
1.000 25.203 2.500

0.082ω = 1 12.333tΔ =

max 0.215a = min 0.108a = −  
1.00

0 
18.728 3.232 

 
Tabe 3. Estimated models for example 2 

Case Process Measured limit cycle parameters FOPDT Model SOPDT Model 

a 
2

2( 1)

se
s

−

+
 

0.776ω =  max 0.892a =  

min 0.594a = −  1 3.630tΔ =  

2.55

(1.64 1)

se
s

−

+
 

2.00

2(1.00 1)

se
s

−

+
 

b 20
1

( 1)s +
 0.149ω =  max 1.054a =  

min 0.680a = −  1 19.667tΔ =  

16.07

(5.02 1)

se
s

−

+
 

13.44

2(3.53 1)

se
s

−

+
 

c 2( 1)( 6 10)

se
s s s

−

+ + +
 

1.414ω =  max 0.0724a =  

min 0.0596a = −  1 2.119tΔ =  

1.500.10
(1.38 1)

se
s

−

+
 

1.180.10
(0.42 1)(1.04 1)

se
s s

−

+ +
 

d 
3

2
4

(10 1)( 1)

se
s s

−

− +
 

0.197ω =  max 2.526a =  

min 1.888a = −  1 12.206tΔ =  

5.064.00
(12.01 1)

se
s

−

−
 

4.274.00
(10.96 1)(0.75 1)

se
s s

−

− +
 

 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Real

Im
ag

in
ar

y

Actual
SOPDT
FOPDT

 
Fig. 2. Nyquist plots for case a 
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models for higher-order plant transfer functions with 
FOPDT or SOPDT plant transfer functions for controller 
design. 

 
 

5. Conclusion 
 
The paper has given a simple procedure for finding the 

plant transfer function gain and disturbance magnitude to 

be used in conjunction with expressions obtained by the 
author’s previous works to help estimating unknown 
parameters of the stable and unstable FOPDT and SOPDT 
plant transfer functions. Simulation examples are provided 
to show the effect of static load disturbances on estimations. 
It is illustrated by examples that large errors can be 
expected if the effect of static load disturbances is not 
considered in the expressions. 

 
 

Appendix: 
 
The expressions used to estimate the unknown para-

meters of stable/unstable FOPDT/SOPDT plant transfer 
functions using relay feedback control when static load 
disturbances exist are provided here for convenience. In the 
expressions, Tλ ω= , 1 1Tλ ω=  and 2 2Tλ ω= . 

 
A.1 Identification for stable FOPDT: 
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A.2 Identification for stable SOPDT: 
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Fig. 3. Nyquist plots for case b 
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Fig. 4. Nyquist plots for case c 
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Fig. 5. Nyquist plots for case d 
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A.3 Identification for unstable FOPDT: 
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A.4 Identification for unstable SOPDT: 
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