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CUBIC PARTITION PAIRS WEIGHTED BY THE

PARITY OF THE CRANK

Byungchan Kim

Abstract. We study congruence properties of the number of cubic
partition pairs weighted by the parity of the crank. If we define such
number to be c(n), then

c(5n + 4) ≡ 0 (mod 5) and c(7n + 2) ≡ 0 (mod 7),

for all nonnegative integers n.

1. Introduction and Statements of Results

In a series of papers ([3], [4], [5]) H.-C. Chan studied congruence
properties for a kind of bi-partition function a(n), which arises from
Ramanujan’s cubic continued fraction, and thus a(n) is known as the
number of cubic partitions. Cubic partition function a(n) is defined by

∞∑
n=0

a(n)qn =
1

(q; q)∞(q2; q2)∞
.
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Here and in the sequel, we will use the following standard q-product
notation:

(a)∞ := (a; q)∞ :=
∞∏
n=1

(1− aqn−1), |q| < 1,

(a1, a2, . . . , ak; q)∞ := (a1; q)∞(a2; q)∞ · · · (ak; q)∞.

We can interpret a(n) as the number of 2-color partitions of n with colors
r and b subject to the restriction that the color b appears only in even
parts. Recently, H. Zhao and Z. Zhong [9] investigated congruences for
the partition function

∞∑
n=0

b(n)qn =
1

(q; q)2∞(q2; q2)2∞
.

Here b(n) counts the number of partition pairs (λ1, λ2), where λ1 and
λ2 are cubic partitions such that the sum of parts in λ1 and λ2 equals
to n. In this sense, we will call b(n) the number of cubic partition pairs.
In particular, Zhao and Zhong proved that

Theorem 1.1 (Theorem 3.2 of [9]). For all n ≥ 0,

b(5n+ 4) ≡ 0 (mod 5),

b(7n+ a) ≡ 0 (mod 7), if a = 2, 3, 4, or 6.

Once congruence properties of a certain type of partition function are
known, it is natural to seek a partition statistic to give a combinatorial
explanation of the known congruences. By using analogy of the crank
of ordinary partitions introduced by G.E. Andrews and F.G. Garvan [1]
and the crank of cubic partitions introduced by the author [7], the author
introduce crank statistics to explain congruences modulo 7. This crank
generating function is given by∑

n≥0

∑
m∈Z

M(m,n)zmqn =

(
(q)∞(q2; q2)∞

(zq, q/z; q)∞(zq2, q2/z; q2)∞

)2

. (1.1)

The precise definition of the crank is quite lengthy, so we omit it here.
Interested reader can find it in [8]. The function M(m,n) is a crank
function in a sense of that∑

m∈Z

M(m,n) = b(n) by letting z = 1 in (1.1),
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and for all nonnegative integers n,

M(i, 7, 7n+ a) ≡M(j, 7, 7n+ a) (mod 7) by [8, Theorem 3],

where M(i, 7, n) is the number of cubic partition paris of n with crank
≡ i (mod 7), 0 ≤ i < j ≤ 6 and a = 2, 3, 4, or 6.

On the other hand, D. Choi, S-Y. Kang, and J. Lovejoy [6] studied
congruence properties of the ordinary partition function weighted by the
parity of crank. In this paper, as an analog of Choi, Kang, and Lovejoy’s
work [6], we study the number of cubic partition pairs weighted by the
parity of the crank, i.e.

∑
n≥0

c(n)qn :=
∑
n≥0

(∑
m∈Z

(−1)mM(m,n)

)
qn

=

(
(q)∞(q2; q2)∞

(−q, ; q)2∞(−q2; q2)2∞

)2

=
(q; q)6∞(q2; q2)2∞

(q4; q4)2∞
.

Interestingly, c(n) also satisfies the following congruences.

Theorem 1.2. For all non-negative integers n,

c(5n+ 4) ≡ 0 (mod 5), (1.2)

c(7n+ 2) ≡ 0 (mod 7). (1.3)

These congruence are interesting in that b(5n + 4) ≡ 0 (mod 5) and
b(7n + 2) ≡ 0 (mod 7) also hold. Not every partitions weighted by the
parity of crank satisfies the same type of Ramanujan congruences. For
example, the number of cubic partitions weighted by the parity of crank
does not seem to have simple congruences. The case original partition
function and weighted counts by the parity of its crank have the same
Ramanujan type congruencies seems to be very rare.
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2. Proof of Theorem 1.2

Before starting the proof, we need to introduce basic results on q-
series. For details, one might consult [2] :

(−q)∞ =
1

(q; q2)∞
,

(−a, ab)∞(−b; ab)∞(ab; ab)∞ =
∞∑

n=−∞

an(n+1)/2bn(n−1)/2,

(q)3∞ =
∑
n≥0

(−1)n(2n+ 1)qn(n+1)/2,

and

(q2; q2)∞
(q; q2)∞

=
∑
n≥0

qn(n+1)/2.

From the first identity, these are known as Euler identity, Jacobi triple
product identity, Jacobi identity, and Gauss identity, respectively.

We start with the first congruence (1.2). First note that the generat-
ing function is congruent to

(q5; q5)∞(q; q)∞(q2; q2)2∞(q4; q4)∞
(q20; q20)∞

(mod 5)

≡ (q5; q5)∞(q; q)∞(q2; q2)3∞(q4; q4)∞
(q2; q2)∞(q20; q20)∞

(mod 5)

≡
(q5; q5)∞

∑∞
k=−∞(−1)kqk(2k+1)

∑
j≥0(−1)j(2j + 1)qj(j+1)

(q20; q20)∞
(mod 5).

Here, we have applied Jacobi identity, and

(q)∞(q4; q4)∞
(q2; q2)∞

=
(q)∞

(q2; q4)∞

= (q)∞(−q2; q2)∞
= (q; q2)∞(q4; q4)∞

= (q, q3, q4; q4)∞

=
∞∑

k=−∞

(−1)kqk(2k+1),
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where the final equality follows form Jacobi triple product formula.
Therefore, to contribute the coefficient of q5n+4, (k, j) ≡ (1, 2) (mod 5),
and thus the contribution toward the coefficient of q5n+4 is a multiple of
5.

Now we turn to prove the second congruence (1.3). First note that
the generating function is congruent to

(q; q)6∞(q2; q2)2∞(q4; q4)3∞
(q28; q28)∞

(mod 7)

≡ (q7; q7)∞(q2; q2)2∞(q4; q4)3∞
(q; q)∞(q28; q28)∞

(mod 7)

≡ (q7; q7)∞(q2; q2)∞(q4; q4)3∞
(q; q2)∞(q28; q28)∞

(mod 7)

≡
(q7; q7)∞

∑
k≥0 q

k(k+1)/2
∑

j≥0(−1)j(2j + 1)q2j(j+1)

(q28; q28)∞
(mod 7),

where we have use Gauss identity and Jacobi identity. To contribute the
coefficient of q7n+2, (k, j) ≡ (3, 3) (mod 7), and thus the coefficients of
q7n+2 are multiples of 7.

3. Concluding Remark

Beside the congruences, it seems that c(n) has an interesting sign
pattern, namely,

c(4n+ 1) < 0. c(4n+ 2) > 0, c(4n+ 3) > 0, c(4n+ 4) < 0,

for all nonnegative integers n. Asymptotical proof for the above should
be available via the classical circle method. An unconditional q-theoretic
proof of the above sign pattern would be interesting.
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