DOI QR코드

DOI QR Code

Fabrication of Porous Al2O3 Film by Freeze Tape Casting

냉동 후막 성형에 의한 다공성 Al2O3 필름 제조

  • Shin, Ran-Hee (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Koo, Jun-Mo (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Young-Do (Division of Materials Science and Engineering, Hanyang University) ;
  • Han, Yoon-Soo (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology)
  • 신란희 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 구준모 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김영도 (한양대학교 신소재공학과) ;
  • 한윤수 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2015.11.23
  • Accepted : 2015.12.04
  • Published : 2015.12.28

Abstract

Porous thick film of alumina which is fabricated by freeze tape casting using a camphene-camphor-acrylate vehicle. Alumina slurry is mixed above the melting point of the camphene-camphor solvent. Upon cooling, the camphene-camphor crystallizes from the solution as particle-free dendrites, with the $Al_2O_3$ powder and acrylate liquid in the interdendritic spaces. Subsequently, the acrylate liquid is solidified by photopolymerization to offer mechanical properties for handling. The microstructure of the porous alumina film is characterized for systems with different cooling rate around the melting temperature of camphor-camphene. The structure of the dendritic porosity is compared as a function of ratio of camphene-camphor solvent and acrylate content, and $Al_2O_3$ powder volume fraction in acrylate in terms of the dendrite arm width.

Keywords

References

  1. E. C. Hammel, O. L R. Ighodaro and O. I. Okoli: Ceramics International, 40 (2014) 15351. https://doi.org/10.1016/j.ceramint.2014.06.095
  2. S. Deville: Advanced Engineering Materials, 10 (2008) 155. https://doi.org/10.1002/adem.200700270
  3. S. Deville., E. Saiz, R. K. Nalla and A. P. Tomsia: Science, 311 (2006) 515. https://doi.org/10.1126/science.1120937
  4. E. Munch, E. Saiz, A. P. Tomsia and S. Deville: J. Am. Ceram. Soc., 92 (2009) 1534. https://doi.org/10.1111/j.1551-2916.2009.03087.x
  5. K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 88 (2005) 1108. https://doi.org/10.1111/j.1551-2916.2005.00176.x
  6. S. Deville, E. Saiz and A. P. Tomsia: Acta Mater., 55 (2007) 1965. https://doi.org/10.1016/j.actamat.2006.11.003
  7. N. O. Shanti, K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 89 (2006) 2444. https://doi.org/10.1111/j.1551-2916.2006.01094.x
  8. T. Waschkies, R. Oberaker and M. J. Hoffmann: J. Am. Ceram. Soc., 92 (2009) S79. https://doi.org/10.1111/j.1551-2916.2008.02673.x
  9. K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.
  10. Y. H. Koh, E. Lee, B. Yoon, J. Song and H. Kim: J. Am. Ceram. Soc., 89 (2006) 3646. https://doi.org/10.1111/j.1551-2916.2006.01311.x
  11. V. Tomeckova and J. W. Halloran: J. Am. Ceram. Soc., 95 (2012) 3763. https://doi.org/10.1111/j.1551-2916.2012.05444.x
  12. L. Ren, Y. P. Zeng and D. Jiang: J. Am. Ceram. Soc., 90 (2007) 3001. https://doi.org/10.1111/j.1551-2916.2007.01833.x
  13. R. Trivede and K. Somboonsuk: Mater. Sci. Eng., 65 (1984) 65. https://doi.org/10.1016/0025-5416(84)90200-3
  14. K. Somboonsuk and R. Trivede: Acta Metall., 33 (1985) 1051. https://doi.org/10.1016/0001-6160(85)90198-1