DOI QR코드

DOI QR Code

이산화탄소 포집능 향상을 위한 활성탄소 섬유 흡착제 제조

Preparation of Activated Carbon Fiber Adsorbent for Enhancement of CO2 Capture Capacity

  • Hwang, Su-Hyun (Department of Environmental Science and Engineering, KyungHee University) ;
  • Park, Hyun-Soo (Department of Environmental Science and Engineering, KyungHee University) ;
  • Kim, Dong-woo (Department of Environmental Science and Engineering, KyungHee University) ;
  • Jo, Young-Min (Department of Environmental Science and Engineering, KyungHee University)
  • 투고 : 2015.10.19
  • 심사 : 2015.11.26
  • 발행 : 2015.12.31

초록

Test activated carbon fiber (ACF) was prepared from Polyacrylonirile (PAN) through oxidation and chemical activation. Immersion of ACF precursors in the aqueous KOH solution enhanced the surface structure, as examined by BET pore analysis. Specific surface area increased greatly from less than $70m^2/g$ to $1226m^2/g$ with 4 M KOH, and total pore volume also rose up to $0.483cm^3/g$. In particular, it was found that micropores favorable for $CO_2$ molecule capture occupied more than 95%. Maximum $CO_2$ adsorption capacity was 3.59 mmol/g at 298 K. Low depth of pores in the present ACF may facilitate the molecules' desorption for its regeneration.

키워드

참고문헌

  1. Bouchelta, C., M.S. Medjram., O. Bertrand, and J.P. Bellat (2008) Preparation and characterization of activated carbon from date stones by physical activation with steam, J. Anal. Appl. Pyrolysis, 82(1), 70-77. https://doi.org/10.1016/j.jaap.2007.12.009
  2. Caglayan, B.S. and A. Er. Aksoylu (2013) $NO_2$ adsorption on chemically modified activated carbon, J. Hazard. Mater., 252/253, 19-28. https://doi.org/10.1016/j.jhazmat.2013.02.028
  3. Castello, D.L., M.A.L. Rodenas, D.C. Amoros, and A.L. Solano (2001) Preparation of activated carbons from spanish anthracite I. Activation by KOH, Carbon, 39(5), 741-749. https://doi.org/10.1016/S0008-6223(00)00185-8
  4. Chen, J.C. and I.R. Harrison (2002) Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethylformamide (DMF), Carbon, 40(1), 25-45. https://doi.org/10.1016/S0008-6223(01)00050-1
  5. Cong, H., M. Zhang, Y. Chen, K. Chen, Y. Hao, Y. Zhao, and L. Feng (2015) Highly selective $CO_2$ capture by nitrogrn enriched porous carbons, Carbon, 92, 297-304. https://doi.org/10.1016/j.carbon.2015.04.052
  6. Diez, N., P. Alvarez, M. Granda, C. Blanco, R. Santamaria, and R. Menendez (2015) $CO_2$ adsorption capacity and kinetics in nitrogen-enriched activated carbon fibers prepared by different methods, Chem. Eng. J., 281, 704-712. https://doi.org/10.1016/j.cej.2015.06.126
  7. Heidari, A., H. Younesi, A. Rashidi, and A.A. Ghoreyshi (2014) Evaluation of $CO_2$ adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment, Chem. Eng. J., 254, 503-513. https://doi.org/10.1016/j.cej.2014.06.004
  8. Hong, H.E., A.A. Adelodun, and Y.M. Jo (2013) Preparation of KOH impregnated AC pellets for selective $CO_2$ capture, J. Odor Indoor Environ., 12(4), 203-210.
  9. Hsiao, H.Y., C.M. Huang, M.Y. Hsu, and H. Chen (2011) Preparation of high-surface-area PAN-based activated carbon by solution-blowing process for $CO_2$ adsorption, Sep. Purif. Technol., 82, 19-27. https://doi.org/10.1016/j.seppur.2011.08.006
  10. Huang, X. (2009) Fabrication and properties of carbon fibers, Mater., 2(4), 2369-2403. https://doi.org/10.3390/ma2042369
  11. Lee, K.J., N. Shiratori, G.H. Lee, J. Miyawaki, I. Mochida, S.H. Yoon, and J. Jang (2010) Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent, Carbon, 48(15), 4248-4255. https://doi.org/10.1016/j.carbon.2010.07.034
  12. Lee, S.Y. and S.J. Park (2013a) Determination of the optimal pore size for improved $CO_2$ adsorption in activated carbon fibers, J. Colloid. Interface Sci., 389(1), 230-235. https://doi.org/10.1016/j.jcis.2012.09.018
  13. Lee, S.Y. and S.J. Park (2013b) Effect of $CO_2$ activation on electrochemical performance of microporous carbons derived from poly (vinylidene fluoride), J. Solid Stats Chem., 207, 158-162. https://doi.org/10.1016/j.jssc.2013.09.013
  14. Leung, D.Y.C., G. Caramanna, and M.M. Maroto-Valer (2014) An overview of current status of carbon dioxide capture and storage technologies, Renewable and Sustainable Energy Rev., 39, 426-443. https://doi.org/10.1016/j.rser.2014.07.093
  15. Meng, L.Y. and S.J. Park (2012) MgO-templated porous carbon-based $CO_2$ adsorbents produced by KOH activation, Mater. Chem. Phys., 137(1), 91-96. https://doi.org/10.1016/j.matchemphys.2012.08.043
  16. Nan, D., J. Liu, and W. Ma (2015) Electrospun phenolic resinbased carbon ultrafine fibers with abundant ultrasmall micropores for $CO_2$ adsorption, Chem. Eng. J., 276, 44-50. https://doi.org/10.1016/j.cej.2015.04.081
  17. Paiva, M.C., P. Kotasthane, D.D. Edie, and A.A. Ogale (2003) UV stabilization route for melt-processible PAN-based carbon fibers, Carbon, 41(7), 1399-1409. https://doi.org/10.1016/S0008-6223(03)00041-1
  18. Park, S.J. and K.D. Kim (2001) Influence of activation temperature on adsorption characteristics of activated carbon fiber composites, Carbon, 39(11), 1741-1746. https://doi.org/10.1016/S0008-6223(00)00305-5
  19. Pinero, E.R., P. Azais, T. Cacciaguerra, D.C. Amoros, A.L. Solano, and F. Beguin (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon, 43(4), 786-795. https://doi.org/10.1016/j.carbon.2004.11.005
  20. Rambabu, N., R. Azargohar, A.K. Dalai, and J. Adjaye (2013) Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications. Fuel Process. Technol., 106, 501-510. https://doi.org/10.1016/j.fuproc.2012.09.019
  21. Ramesh, T., S. Su, X.X. Yu, and J.S. Bae (2013) Application of acarbon fibre composites to $CO_2$ capture from flue gas, Int. J. Greenh. Gas Control, 13, 191-200. https://doi.org/10.1016/j.ijggc.2012.12.014
  22. Rodenas, M.A.L., D. Cazorla-Amoros, and A. Linares-Solano (2003) Understanding chemical reactions between carbons and NaOH and KOH. Carbon, 41(2), 267-275. https://doi.org/10.1016/S0008-6223(02)00279-8
  23. Sait, Y. and Y. Derya (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with $H_3PO_4$, J. Taiwan Inst. Chem. E., 53, 1-10. https://doi.org/10.1016/j.jtice.2015.02.036
  24. Shakerian, F., K.H. Kim, J.E. Szulejko, and J.W. Park (2015) A comparative review between amines and ammonia as sorptive media for post-combustion $CO_2$ capture, Appl. Energy, 148, 10-22. https://doi.org/10.1016/j.apenergy.2015.03.026
  25. Tseng, R.L., S.K. Tesng, F.C. Wu, C.C. Hu, and C.C. Wang (2008) Effect of micropore development on the physicochemical properties of KOH-activated carbons, J. Chin. Inst. Eng., 39(1), 37-47. https://doi.org/10.1016/j.jcice.2007.11.005
  26. Unai, I.V., L.A. Jose, Z. Lorena, and S. Irene (2014) An insight into the reactions occurring during the chemical activation of bone char, Chem. Eng. J., 251, 217-227. https://doi.org/10.1016/j.cej.2014.04.048
  27. Xiaojun, M., F. Zhang, J. Zhu, L. Yu, and X. Liu (2014) Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution, Bioresour. Technol., 164, 1-6. https://doi.org/10.1016/j.biortech.2014.04.050
  28. Yoon, S.H., S.Y. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, and I. Mochida (2004) KOH activation of carbon nanofibers, Carbon, 42(8-9), 1723-1729. https://doi.org/10.1016/j.carbon.2004.03.006
  29. Yusof, N. and A.F. Ismail (2012) Post spinning and pyrolysis processes of polyacrylonitirle (PAN)-based carbon fiber and activated carbon fiber: A review, J. Anal. Appl. Pyrolysis, 93, 1-13. https://doi.org/10.1016/j.jaap.2011.10.001

피인용 문헌

  1. Preparation of Paper from Pitch-based Activated Carbon Fibers and Adsorption Characteristics vol.29, pp.5, 2016, https://doi.org/10.7234/composres.2016.29.5.256
  2. Capture vol.32, pp.2, 2016, https://doi.org/10.5572/KOSAE.2016.32.2.176