
Copyright  2015.  The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677   eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 9, No. 4, December 2015, pp. 190-203

Crowdsourcing Identification of License Violations

Sanghoon Lee

Department of Computer Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea

sanghoon@postech.edu 

Daniel M. German

Department of Computer Science, University of Victoria, Canada 

dmg@uvic.ca 

Seung-won Hwang*

Department of Computer Science, Yonsei University, Seoul, Korea 

seungwonh@yonsei.ac.kr 

Sunghun Kim

Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong

hunkim@cse.ust.hk

Abstract
Free and open source software (FOSS) has created a large pool of source codes that can be easily copied to create new

applications. However, a copy should preserve copyright notice and license of the original file unless the license explic-

itly permits such a change. Through software evolution, it is challenging to keep original licenses or choose proper

licenses. As a result, there are many potential license violations. Despite the fact that violations can have high impact on

protecting copyright, identification of violations is highly complex. It relies on manual inspections by experts. However,

such inspection cannot be scaled up with open source software released daily worldwide. To make this process scalable,

we propose the following two methods: use machine-based algorithms to narrow down the potential violations; and

guide non-experts to manually inspect violations. Using the first method, we found 219 projects (76.6%) with potential

violations. Using the second method, we show that the accuracy of crowds is comparable to that of experts. Our tech-

niques might help developers identify potential violations, understand the causes, and resolve these violations.

Category: Human computing

Keywords: Crowdsourcing; Software license; Violation; Clone detection

I. INTRODUCTION

Reusing code is a common practice in software devel-

opment. However, it may come with a price. According

to copyright law, the only individual who is allowed to

copy a program (or portions of it) is the copyright owner

Received 02 November 2015; Accepted 23 November 2015

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2015.9.4.190 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Crowdsourcing Identification of License Violations

Sanghoon Lee et al. 191 http://jcse.kiise.org

and those authorized by the owner such as employees

during the course of their work and those who have

received a license to make such a copy. Any other copy-

ing of the source code by a third party could be heavily

penalized. For example, a United States Court has ruled

that copying 54 lines out of 160,000 is considered as a

copyright infringement or when the copied code is suffi-

ciently important to the operation of the program [1].

To illustrate the importance and complexity of copy-

right problem in software, in the case Oracle of America

vs. Google, a jury has determined that Google has indeed

copied a few lines of code (method rangeCheck) from

Oracle [2]. It is very important to realize that, even

though a lot of codes share similarities (considered as

clones by a clone detector), the only code that is found to

be a copy is the one that has clear traceability, such as the

one between Oracle and Google. In the verdict, a devel-

oper admitted that he had made those copies. This rein-

forces the importance of using clone detection in

combination with analysis of the history of the code to

determine any potential license violation.

Besides complexity, free and open source software

(FOSS) presents challenges in tracing a large pool of

source code created daily. In fact, one of the most impor-

tant features of FOSS is that it can be copied to create

new applications as long as the person who makes the

copy agrees to conditions imposed by the license of the

copied code. Copying source code across FOSS is well

documented [3, 4]. Sojer and Henkel [5] have inter-

viewed several hundred developers and discovered that

copying FOSS code by commercial enterprises is com-

mon. However, in many cases, software developers lack

the understanding about the legal risks associated with

such activity. Their organizations also lack policies to

guide them. As described previously [4], embedding

source code from another copyright owner can create

several challenges, including the following:

● Provenance: Tracking the copyright owner and

license of the copied code.
● License Analysis: Determining if the license of the

original code allows the intended use of the copy.
● Evolving the copy as the original changes. Managing

the evolution of the copy with respect to the original

is difficult.

Manual inspection of these files to find potential viola-

tions is time consuming and labor intensive. 

Our goal was to achieve scalability of the identification

process for potential violations by proposing machine-

based tools and crowdsourcing. Specifically, we used the

following methods:

Machine-based Framework: We developed a tool

that could automatically detect cloned parts and

license inconsistencies. Such information can be

used to automatically narrow down potential viola-

tions to reduce workload. These potential violations

can then be reviewed by human workers to guide

human decisions (in Section III).

Empirical Validation of Machine-based Approaches:

We empirically determined the quantity of potential

violations. We found that potential license violations

were widespread. A total of 219 out of 286 open

source projects (76.6%) had potential license viola-

tions (in Section IV).

Crowdsourcing Case Study: Once we narrowed

down the potential violations, instead of presenting

all potential violations to experts, we proposed to

simplify the task by distributing the tasks to general

crowds. With information obtained from machine-

based algorithms as guidance (e.g., highlighting

cloned parts and file level relevance scores), crowds

made identical decisions with experts (in Section V).

II. OVERVIEW

This section provides an overview for the decision pro-

cess in the identification of license violation similar to

those described in the literature [6]. The decision process

is depicted in Fig. 1. Its input is a file to be verified for

potential license violation. It consists of four steps that

Fig. 1. Decision diagram to identify potential license violations
between clones.



Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 190-203

http://dx.doi.org/10.5626/JCSE.2015.9.4.190 192 Sanghoon Lee et al.

we will deal with using either machine-based algorithms

or crowdsourcing (marked as [M] and [C], respectively).

1. Find clones [M]: First we identified the fragment

level clones using existing machine- based algo-

rithms. We exploited characteristic vector based clone

detection tools [7, 8]. This method matched some

part of the input code to others in our code corpus.

2. Are they accidental clones? [M]: Since not all

clones result from copying, we proposed a machine

learning approach to classify clones as accidental

clones and intentionally copied files.

3. Identify license inconsistency [M]: We identified

licenses of each clone file by using existing machine-

based tool FOSSology [9]. If two clones had differ-

ent licenses, we raised a flag based on the tool.

4. Determine the provenance and evolution of the

files [C]: Based on potential violations identified by

machines, human experts could look into potential

problem areas to determine which file is the source,

which is the copy, at what moment the copy was

made, what were the license statements of the files

at the moment of copying, how were they evolved,

and whether the clones were involved in copyright

violation.

In Section III, the first machine-based approaches to

identify potential violations, through Sections III-A, III-

B, and III-C, are discussed. In Section IV, each method of

machine-based process was evaluated. In Section V, how

crowdsourcing can contribute to the fourth step and vali-

date its effectiveness in case studies is discussed.

III. MACHINE IDENTIFICATION OF POTENTIAL
LICENSE VIOLATIONS

In this section, the detailed process of three machine-

based steps are discussed. Methods are introduced in line

with steps in decision rules described in Section II. First,

we found clones (Section III-A). If the clones are inten-

tionally copied codes (Section III-B), licenses of files

containing the clones (Section III-C) are then identified.

A. Finding Clones

Code fragments that are textually, syntactically, or

semantically similar are called code clones. Various and

efficient clone detection techniques have been proposed

by different researchers [7, 8, 10, 11].

We leveraged efficient clone detection tools [7, 8] for

large corpus of source files. We fist represented code

using characteristic vectors. That is, we generated

abstract syntax trees (ASTs) (Fig. 2) of the source code

and approximated the trees into vectors to find clones

with high tree similarity. Vectors were tagged at the bot-

tom of the nodes. The vector in root node indicated that

the example code had seven SimpleName syntax units,

three Modifier, and one for the rest of each syntax unit. If

there was another code whose characteristic vector was

the same as the example, the two codes may be clones

with a high probability. Therefore, we found clones based

on vector similarity.

Once the source code was vectorized, we built an

index-based search mechanism by adopting published

techniques [8] to detect clone candidates efficiently. We

then employed the index in a filter and refinement strat-

egy to find similar vectors. For each vector, we queryed

the index to retrieve similar vectors. We computed the

exact similarities of result vectors with the query vector

and selected only vectors whose similarities were large

enough as clones.

B. Classifying Copied Clones

All clones that we found were not results from copying

other code. Some of the same codes might have been

accidentally created by independent developers. These

clones may look alike. However, they are not copied

explicitly from each other. We refer to these clones as

accidental clones. In this case, differences in licenses of

accidental clones do not matter since the code is indepen-

dently written without copying each other. Examples of

accidental clones are shown in Fig. 3(a)-(c). Most acci-

dental clones include commonly used code idioms such

as for- loops, getter and setter methods, constructors, and

exception handling.

On the other hand, copied clones are results from

intentionally copying of files. An example of copied

clones is shown in Fig. 3(d). One of the two clones is cre-

Fig. 2. Example of vector extraction.



Crowdsourcing Identification of License Violations

Sanghoon Lee et al. 193 http://jcse.kiise.org

ated by copying the other. Unlike accidental clones, if

copied clones have different licenses, it can be a potential

violation.

For efficient license violation detection, it is important

to identify accidental clones and filter them out. Auto-

matic detection of copied clones is generally challenging.

However, these clones can be distinguished by experi-

enced developers as shown in Fig. 3(a)-(d).

Our approach to classify accidental and copied clones

is by using a machine learner based on manually marked

copies and accidental cloned benchmark set. First, we

constructed a benchmark set by labeling clones as acci-

dental and copied clones by a human assessor. Then we

built a classification model based on machine learning

with labeled characteristic vectors. Once a prediction

model was built based on the benchmark set, it could

classify clones as accidental or copied ones.

C. Identifying License Inconsistency

After identifying clones and filtering out accidental

clones, we could simply check the license information of

copied clones. When the licenses of copied clones are not

identical, they might have potential violations. In this

section, we discussed how to detect non-identical license

pairs and identify inconsistent combinations.

Licenses were assigned to each file. Licenses in a file

did not affect other files with different licenses. When

identifying license inconsistencies, it does not matter if

there are many source files with different licenses in a

project. Therefore, we detected licenses in each file and

handled it independently from other files, although these

files were in the same project. To identify the license of

each copied clone, we used the state-of-the-art license

detection tool FOSSology [9].

We compared the identified licenses in the copied

clones to find license differences. We then classified

them into two main groups according to the degree of

violation risk: low and high. 

In the low risk group we have:

● No License: One clone had a license, but the other

did not. There might be three reasons why a file with

no license might have a clone with one: 1) the clone

was made when the original had no license; the orig-

inal later changed its license, but the clone still has

no license (no potential violation); 2) the original still

has no license, but a license was added to the clone (a

potential violation); and 3) there was a license in the

original file, but it was removed from the clone (a

potential violation too).
● License Upgrade: One file had one license and the

other had a newer license (e.g., Apache v1.1 and

Apache v2.0). By manually sampling some of these

pairs we found that in all cases it was because the

clone was made when the file used the previous ver-

sion of the license.
● Added License: The license of one clone was a

superset of the original file. From the point of view

of copyright law, a person who copies and then mod-

ifies a copyrighted work is the owner of such modifi-

cations only. As such, this person can attach a license

to such changes or add another license to the cloned

file. For example, we observed that the original files

came from Apache Foundation projects. The projects

that made the copy had added other licenses.
● License Upgrade and License Added. One combi-

nation was a mixture of an upgrade and an added

license. In this case, the clone happened when the

older version of the license was in use (Apache v1.1).

The original file changed its license (to Apache

v2.0), while the clone file had two licenses added to

it (CDDL and GPL v2).

In the high risk group we have:

Fig. 3. Clone examples: (a) setter methods, (b) constructors
with member field initialization, (c) exception handlings, and (d)
copied clones. 



Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 190-203

http://dx.doi.org/10.5626/JCSE.2015.9.4.190 194 Sanghoon Lee et al.

● Different Licenses: Both clones had different and

unrelated licenses.

According to the above taxonomy of license inconsis-

tency with risk of license violation, we focused on fatal

conflicts to resolve. If we know how to change the

license in a code, we can classify some license inconsis-

tency into the above risks. In addition, when the code cre-

ation time is given, we can judge which code has the

possibility of violation. We will explain the process of

tracing code provenance by crowdsourcing in Section V.

IV. EVALUATION OF MACHINE-BASED
APPROACHES

A. Setting

In order to present distinguishing features about clones

with respect to license issue empirically, we first built a

large corpus of source code against which we searched

for clones. We collected 212,657 Java source files of 286

free and open source software projects that are popularly

and actively managed in major large FOSS repositories

such as the Apache Software Foundation, Google Code,

Java.net, and SourceForge.net as shown in Table 1.

Among the projects we gathered, no project was released

into two or more repositories. Every project was unique

in our corpus.

B. Find Clones

To extract characteristic vectors from each code, we

used the parser in the Eclipse Java development tools

(JDT; http://www.eclipse.org/jdt/) to build an AST. We

generated 83 dimensional vectors representing 83 differ-

ent AST node types provided by JDT. Each value repre-

sented the frequency of each element. We only

considered vectors with frequency sum of 50 or above to

prune out code fragments of insignificant size. Finally,

we linearly normalized each vector to build a unified tool

for clones of various sizes. 

In our corpus, we generated 1,960,360 vectors from

212,657 files. Once the vectors were extracted, we built

an index structure to query similar vectors. We used a

relational database management system MySQL to store

and index vectors. Although finding clones for a single

code fragment using the index could be finished within a

second, it took more than ten days to find clones for all

code fragments in our dataset consisting of 2 million vec-

Table 1. Statistics of collected FOSS projects

Community Project #subproj. #files #LOC #vectors

Apache Software Foundation Hadoop 8 5,905 1,327,985 81,013

Xerces 1 823 256,493 13,022

Jakarta 8 2,717 468,118 20,087

… … … … …

Total 99 97,077 16,929,668 872,740

Google Code Google Web Toolkit 1 3,556 564,598 28,467

jMonkeyEngine 1 1,139 270,202 14,267

FEST 1 3,202 255,836 8,654

… … … … …

Total 36 23,380 3,670,310 199,965

Java.net GlassFish 1 15,437 2,994,385 142,247

JavaCC 1 195 34,928 2,552

LG3D 2 1,005 195,223 5,635

… … … … …

Total 147 91,144 16,965,554 874,667

SourceForge.net CUBRID Cluster 1 89 18,120 845

Guacamole 1 36 3,707 249

… … … … …

Total 4 1,061 178,807 12,988

Total 286 212,657 37,572,912 1,960,360



Crowdsourcing Identification of License Violations

Sanghoon Lee et al. 195 http://jcse.kiise.org

tors. After finding clones, we could reuse this informa-

tion to detect potential license violations.

We queried the index for each vector to find clones in

the same corpus. A total of 639,789 clones were detected.

Among them, 168,167 clones were related to more than

two projects, and 82,950 files (39%) had cross-project

clones.

Due to approximation of source code into characteris-

tic vectors, this approximation may return false answers.

Based on [8], both precision and recall of clone identifi-

cation were around 0.75.

C. Copied Clones

We employed classifier to distinguish copied clones

learned from benchmark set. The benchmark set was con-

structed by labeling clones as accidental and copied

clones by a human assessor who had more than 5 years of

programming experience. After labeling clones as acci-

dental or copied, we used characteristic vectors [7] of

each clone as features, namely the frequency of syntactic

elements in the code. For the classification model, we

used Support Vector Machines [12, 13], a state-of- the-art

classification algorithm that has been shown to be empir-

ically optimal for several learning tasks.

To evaluate our proposed classifier, we designed two

simple experiments. First, we learned an SVM classifier

using randomly sampled 428 clones. Among the 428

clones, 210 were manually labeled as accidental clones,

and 218 were labeled as copied clones. The classifier was

first evaluated using 10-fold cross validation with the

labeled data. As shown in Table 2, the average accuracy

of the classifier was 91.2%.

Unfortunately, it is possible that these samples are not

representatives. It may not work properly for new clone

inputs. Therefore, we also sampled additional 219 test

clones and applied the same classifier to the new test

clones. We then manually verified the classification results.

Of the 219 samples, 197 clones were correctly classified,

i.e., the accuracy was 89.9% (Table 2). The accuracy for

the new clones was not significantly decreased compared

to the accuracy of cross validation. Many clones were

found. Selecting representative clones among them will

require too much effort. Instead, we showed that the per-

formance of learner was stable for the new test clones and

that the learner was robust. 

Our experimental results showed that the proposed

classifier was accurate enough to eliminate accidental

clones for license violation detection. We applied this

classifier and filter out accidental clones. Out of a total of

639,789 clones, 484,460 clones were classified as acci-

dental clones, i.e., more than 75% of clones were acci-

dental clones.

D. Identify Licenses

To identify the license of each copied clone, we used

the state-of-the-art license detection tool FOSSology [9]

version 1.1.0. FOSSology is based on Binary Symbolic

Alignment Matrix (bSAM) algorithm [14] for textual

comparison of license statements.

Using FOSSology, 92 different licenses were identified

from our 286 subjects. The top 10 most used licenses in

our subjects are shown in Table 3. Apache Software

License v2.0 is the most common one found in our col-

lected subjects. A disjunctive combination of GPL v2,

CDDL and LGPL v2.1 was also widely used. A total of

25,367 files (11.9%) and 45 projects (15.7%) from

212,657 files and 286 projects used them.

Approximately 25% of files did not have any license,

which was noted as ‘NO LICENSE’ in Table 3. This is

consistent with results of other studies. For example,

31.5% and 19% of files had no license [15, 16]. However,

FOSSology could not identify licenses in 1.8% of total

files, which we marked as ‘UNKNOWN’.

Table 4 shows the most frequent different licenses for

clone files found in our subjects. More than half of the

files related to license conflicts were caused by empty

license notices. We also found many added licenses on

Apache licenses. Moreover, there was a significant differ-

ence in the number of licenses which might be at high risk

of violation.

Results of filtering out the low risk license inconsistent

clones are shown in Table 5. A total of 5,095 clones had

different licenses, of which 1,104 from 132 different

projects were at high risk of potential violations. 

Overall, these results show that more than 132 projects

Table 2. Evaluation of the copied clone classifier

Validation model Accuracy (%)

10-fold cross validation 91.2

219 test set 89.9

Table 3. Top-10 licenses used in collected FOSS projects

License #files (%) #projects (%)

Apache v2.0 113,572 (53.4) 171 (59.8)

NO LICENSE 53,478 (25.1) 227 (79.4)

CDDL, GPL v2 16,595 (7.8) 15 (5.2)

GPL v2 5,547 (2.6) 27 (9.4)

UNKNOWN 3,847 (1.8) 53 (18.5)

INRIA-OSL 3,751 (1.8) 25 (8.7)

MIT Free with copyright clause 1,957 (0.9) 14 (4.9)

LGPL GNU C Library 1,827 (0.9) 14 (4.9)

LGPL v2.1+ 1,556 (0.7) 9 (3.1)

Apache v2.0, CDDL, GPL v2 1,338 (0.6) 7 (2.4)



Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 190-203

http://dx.doi.org/10.5626/JCSE.2015.9.4.190 196 Sanghoon Lee et al.

might be at high risk of potential license violations. 

V. CROWDSOURCING FOR FINAL DECISION

A. Expert Task

To make the final decision about the correct licenses

with potential violation, experts were asked to identify

the provenance of conflict files, such as when the copy

was made, in which direction, and what other modifica-

tions the clone suffered.

To understand code evolution over time, experts could

look at SCM repositories and trace provenance. They

retrieved all revisions for each file containing the clone

snippets. An example of provenance that an expert dis-

covered is shown in Fig. 4. When the machine-based pro-

cess identified that the three files-A (r7), B (r4), and C

Table 4. Inconsistent license combinations found frequently

Risk of violation Type License 1 License 2 #files #projects

Low No License NO LICENSE Apache v2.0 1,799 178

NO LICENSE CDDL, GPL v2 635 61

NO LICENSE INRIA-OSL 283 38

NO LICENSE GPL v2 217 47

NO LICENSE UNKNOWN 163 39

NO LICENSE GPL v3 131 15

NO LICENSE LGPL v2.1+ 87 31

NO LICENSE Apache v2.0, CDDL, GPL v2 71 21

NO LICENSE MIT 67 17

NO LICENSE LGPL GNU C Lib 60 22

Upgrade Apache vl.l Apache v2.0 230 28

Add Apache v2.0 Apache v2.0, CDDL, GPL v2 1,224 42

Apache v1.1 Apache v1.1, CDDL, GPL v2 150 2

Upgrade & Add Apache v1.1, CDDL, GPL v2 Apache v2.0 202 15

High Different Apache v2.0 CDDL, GPL v2 1,030 86

Apache v2.0 GPL v2 259 79

Apache v2.0 LGPL v2.1+ 155 36

Apache v2.0 INRIA-OSL 133 62

Apache v2.0 UNKNOWN 128 59

Apache v2.0 LGPL GNU C Lib 89 38

Table 5. Number of files and projects involved in potential
license violations

Domain #files (%) #projects (%)

Clones 82,950 (39.0) 280 (97.9)

Copied clones 24,566 (11.6) 264 (92.3)

Different licenses 5,095 (2.4) 219 (76.6)

Low risk inconsistent clones 4,548 (2.1) 216 (75.5)

High risk inconsistent clones 1,104 (0.5) 132 (46.2)

Total 212,657 (100) 286 (100)

Fig. 4. Example provenance diagram of 3 cloned files. The
hashed line denotes the potential copy of the file from the
original project to another one. Each revision is colored with its
license at that moment.



Crowdsourcing Identification of License Violations

Sanghoon Lee et al. 197 http://jcse.kiise.org

(r6)-were clones, experts tried to find out where the cop-

ied codes were derived from by investigating license

statements. For example, experts would investigate dot-

ted arrows as potential derivations and conclude one of

the arrows as an actual violation. However, the whole

process of identifying potential violations and investigat-

ing related statements is very labor intensive. Further-

more, this task needs background knowledge about

software and licenses as well as the intuition to under-

stand the collected histories, making it hard to perform it

in a mechanical way.

B. Case Studies

We proposed an alternative method to solve such chal-

lenge by using wisdom of the crowd. Provenance of

codes can be traced by many individuals with their col-

lective intelligence rather than an expert’s knowledge. In

order to show that crowds can be substituted for an

expert, we asked crowds to identify the origin of clones.

To assist the crowds, we provided commit date, commit-

ter, commit message, license, different codes of other

revisions, and similarity scoring to guide crowds in deci-

sion making. We will present four case studies in the fol-

lowing sections. 

1) Case Study 1: XMLChar.java (I)

The first case was built for a well-known open source

project Xerces, a widely adopted module in other projects

to process XML documents. XMLChar.java of Xerces

project defines the XML character properties. It is uti-

lized to parse XML data. Many other projects copied and

modified its source file which may cause license issue.

We found several projects with XMLChar.java of Xerces

copied without knowing the origin of clone files. We

asked the crowd to find the origin of XMLChar.java file

in FastInfoset project that was actually copied from the

Xerces project. This file has been changed to another

package location, modified to comments after copied. In

addition to FastInfoset, we found clone XMLChar.java

files in five other projects. We collected a total of 44

source files with different revisions. To alleviate the

heavy work load for participants caused by many revi-

sions, we computed textual similarities to FastInfoset’s

first revision of copied file. Only top-10 similar candi-

dates were presented with question. The similarity was

computed based on the number of lines they share as

shown in the following: 

where r and s were source files, |r| was the number if

lines of file r, and diff() was the number of different lines

between two files.

The commit date, committer, license, and similarity for

each revision are shown in Table 6. In addition, we gave

clone snippets and different lines between files (not

depicted in Table 6 due to the lack of space).

Individuals made their decision about the origin by

looking at the difference in each revision of XML-

Char.java. We asked four non-experts to answer the ques-

tion. They had programming experience. However, they

have less knowledge about license or open source

projects. There were three files tied for the best similarity

score. However, files in Jaxp-Sources were created later

than those of FastInfoset. If we considered the commit

dates, we could identify the correct origin by revision

r319746 of Xerces. Commit message of FastInfoset also

revealed that it came from Xerces. Although these indi-

viduals were not experts, all participants successfully

found the origin of FastInfoset by the commit date and

message. This case study showed that the crowd has the

ability to trace the history of codes.

2) Case Study 2: XMLChar.java (II)

In this study, we designed a tracing question with the

same XMLChar.java. We found that some copied XML-

Char.java had been copied again to other projects. As

mentioned earlier, the origin of XMLChar.java is Xerces.

However, Sling project did not copy it directly from

Xerces. It was brought from Tomcat-Jasper. As usual,

Tomcat-Jasper was copied from Xerces. We collected a

total of 42 revisions from seven projects. Among them,

the top-11 similar candidates to the Sling were given to

crowd (Table 7).

As in the previous case study, the crowd tried to find

the origin by comparing the difference among the candi-

dates. However, in this case, similarities were high in

general. Therefore, it was difficult to choose the origin

only based on the score. In addition, it was not easy for

non-experts to understand commit messages in this case.

Participants had to check the difference between Sling

file and origin candidates in the manual. Among them,

the last three revisions of Jasper were almost identical to

the Sling. The only changes were several blank lines.

Individuals had to decide the origin with their own eyes

in this case. Three of four participants identified the ori-

gin correctly. Therefore, the majority of the four non-

experts could correctly identify the origin of license. 

3) Case Study 3: StringUtil.java

This case study was designed with clones used in many

projects but built by only one developer. StringUtil.java

was created and managed by ericmacau who is involved

in five open source projects (Reales, PutoWeb, Sharp-

POS, Simflet, and Kudocs). The same named files were

used in all five projects. However, all files were different

in content and license. Therefore, if we were not aware

that those files were written by the same developer, we

might have thought that there is a license violation. We

asked the crowd to determine the license violation issue

and to find the origin of Reales’s StringUtil.java. The

similarity r  s( , ) 1
diff r  s( , )

r s+
----------------------–=



Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 190-203

http://dx.doi.org/10.5626/JCSE.2015.9.4.190 198 Sanghoon Lee et al.

crowd was referred to the meta data of the files as shown

in Table 8. We presented all histories of every revision in

this study. The fact that the all revisions were committed

by one developer is interesting. It may give an intuition to

Table 6. Version history for XMLChar.java clones for finding origin of FastInfoset

(a) XMLChar.java of FastInfoset project

Revision Commit date Committer Commit message License

r1.1 2005-04-18 sandoz Xerces XMLChar class renamed and included Apachev1.1, Apachev2

r1.2 2006-03-16 sandoz Started cleaning and adding JavaDoc Apachev1.1, Apachev2

(b) Four projects of the same committer containing clones

Project Revision Commit date Committer License Similarity

Xerces r319746 2004-02-04 mrglavas Apachev1.1 0.976

r319806 2004-02-25 mrglavas Apachev2 0.932

GlassFish r1.1 2005-05-27 dpatil Apachev2 0.942

Jasper r389146 2006-03-27 remm Apachev2 0.940

r423920 2006-07-20 mturk Apachev2 0.940

r466609 2006-10-21 markt Apachev2 0.940

r467222 2006-10-24 markt Apachev2 0.940

r593649 2007-11-09 markt Apachev2 0.940

Jaxp-Sources r1.1.2.1 2005-08-01 jeffsuttor Apachev1.1 0.976

r1.2 2005-08-16 jeffsuttor Apachev1.1 0.976

Table 7. Version history of XMLChar.java clones for the origin of Sling

(a) XMLChar.java of Sling project

Revision Commit date Committer Commit message License

r599941 2007-12-01 fmeschbe SLING-116 Reintroduce compilation to repository… Apachev2

r746681 2009-02-22 cziegeler SLING-865: Move to bundles Apachev2

r768268 2009-04-24 jukka SLING-941: Lots of svn:eol-style settings… Apachev2

r785979 2009-06-18 fmeschbe Move Sling to new TLP location Apachev2

(b) Five projects of the same committer containing clones

Project Revision Commit date Committer License Similarity

Xerces r319864 2004-03-25 mrglavas Apachev2 0.963

r447241 2006-09-18 mrglavas Apachev2 0.970

GlassFish r1.1 2005-05-27 dpatil Apachev2 0.964

Jasper r389146 2006-03-27 remm Apachev2 0.968

r423920 2006-07-20 mturk Apachev2 0.968

r466609 2006-10-21 markt Apachev2 0.975

r467222 2006-10-24 markt Apachev2 0.975

r593649 2007-11-09 markt Apachev2 0.975

Saxon r2 2006-09-05 mhkay Apachev2 0.964

r4 2006-09-05 mhkay Apachev2 0.964

Jaxp-Sources r1.3 2005-09-26 sunithareddy Apachev2 0.963



Crowdsourcing Identification of License Violations

Sanghoon Lee et al. 199 http://jcse.kiise.org

the crowd to answer those questions.

StringUtil.java has been changed slightly over

projects. The first revision of Reales’s file was almost

identical to the last revision of SharpPOS’s file, indicat-

ing that SharpPOS was the origin of Reales. Although

there was no commit message in Reales, a majority of

participants agreed that the r1.2 of SharpPOS was the ori-

gin. It had the highest similarity to the Reales committed

in close time. Other projects had different licenses, which

might have caused license violation. However, Strin-

gUtil.java of Reales had the same license with its origin.

Therefore, Reales was safe from license violation. All

participants also correctly judged that this project fol-

lowed the license policy.

4) Case Study 4: getImageComponents method

In this case study, we designed a trace with a clone

snippet method. Wonderland-Incubator project was com-

posed by copying Lg3d-Wonderland. We found the same

getImageComponents method in both projects. Lg3d-

Wonderland had the method in two files: Texture-

Fixer.java and ModelCompiler.java. Wonderland-Incuba-

tor had the same method in GzScenePacker.java. As we

inspected the history of the two projects, the method was

created in Lg3d-Wonderland project for the first time. We

asked crowd to find the origin of getImageComponents

method and determine whether there was license violation.

We present the history of three files in Table 9. File

level similarities were relatively small because only getI-

Table 8. Version history of StringUtil.java clones for the origin of Reales

(a) StringUtil.java of Reales project

Revision Commit date Committer Commit message License

r1.1 2007-04-25 ericmacau *** empty log message *** LesserGPLv2.1+

r1.2 2007-04-25 ericmacau *** empty log message *** LesserGPLv2.1+

r1.3 2007-05-11 ericmacau *** empty log message *** LesserGPLv2.1+

r1.4 2007-05-13 ericmacau *** empty log message *** LesserGPLv2.1+

r1.5 2007-05-30 ericmacau *** empty log message *** LesserGPLv2.1+

(b) Four projects of the same committer containing clones

Project Revision Commit date Committer License Similarity

Kudocs r1.1 2005-12-26 ericmacau X 0.152

Simflet r1.1 2006-06-23 ericmacau GPLv2+ 0.862

r1.2 2006-07-04 ericmacau GPLv2+ 0.873

r1.3 2006-07-04 ericmacau GPLv2+ 0.873

r1.4 2006-07-06 ericmacau GPLv2+ 0.868

r1.5 2006-07-06 ericmacau Apachev2 0.872

rl.6 2006-07-06 ericmacau Apachev2 0.846

SharpPOS r1.1 2007-02-26 ericmacau LGPL, LGPL v2.1+ 0.996

r1.2 2007-02-26 ericmacau LGPL, LGPL v2.1+ 0.999

PutoWeb r1.1 2008-06-28 ericmacau Apachev2 0.840

r1.2 2008-07-01 ericmacau Apachev2 0.833

r1.3 2008-07-01 ericmacau Apachev2 0.703

r1.4 2008-07-04 ericmacau Apachev2 0.798

r1.5 2008-07-08 ericmacau Apachev2 0.767

r1.6 2008-07-11 ericmacau Apachev2 0.759

r1.7 2008-07-18 ericmacau Apachev2 0.548

r1.8 2008-08-12 ericmacau Apachev2 0.535

r1.9 2009-02-21 ericmacau Apachev2 0.550

r1.10 2009-02-23 ericmacau Apachev2 0.550



Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 190-203

http://dx.doi.org/10.5626/JCSE.2015.9.4.190 200 Sanghoon Lee et al.

mageComponents method parts were identical among

files. In this test case, we focused on judging the potential

license violation rather than finding the correct origin of

clones. GzScenePacker.java of Wonderland-Incubator

project did not have any license statement, indicating a

high risk of license violation. All participants agreed that

GzScenePacker.java of Wonderland-Incubator violated

the original license.

In summary, tracing repositories to find origin of cop-

ied codes can be addressed by the crowd. When meta-

data for the clone files are given, the crowd can under-

stand the provenance of clones by linking the relation-

ships between clones. With the help of machine-based

analysis and meta-data for clone files, a few non-experts

could replace an expert without compromising the accu-

racy. Considering the fact that experts with deep under-

standing of open source projects are rare and that tracing

provenance demands lots of time, this is a promising

application of crowdsourcing.

VI. RELATED WORK

Crowdsourcing is a task to solicit contributions from a

large number of people. It has been actively studied as a

means to integrate human intelligence with machine

computations based on the survey of Doan et al. [17]. It

focuses on how to compose or distribute questions to the

crowd that machine cannot answer. We categorized

crowdsourcing tasks according to the characteristic of the

problem. First, the tasks were small ones so that it was

easy for individuals to reply with little effort, such as tag-

ging and voting products. The goal of crowdsourcing is

to minimize the total elapsed time, error rate [18], or pay-

ment [19]. Second, some problems require huge tasks

that it is even hard for experts to solve, such as protein

folding problem [20]. A large set of answers from non-

experts are aggregated and presented as solution relying

on the wisdom of the crowd [21]. Our work successfully

unleashed the power of crowds in addressing the license

violation problem that has been solely determined

through manual inspection by experts.

Many researchers have warned about the difficulties in

including FOSS components in commercial software [22-

24]. IBM’s Ariadne appears to be the only software envi-

ronment that incorporates the management of intellectual

property in software development [25]. However, it is

restricted to tracking the provenance of software assets

that are created in-house. Alspaugh et al. [26] and

Alspaugh and Scacchi [27] have modeled how licenses

can (or cannot) interact between each other. They have

described how software licensing is an important concern

in requirements analysis of systems built from compo-

nents with different licenses. They have also studied the

importance of licensing in ecosystems of FOSS applica-

tions [28]. Sojer and Henkel [29] have interviewed sev-

eral hundred developers and discovered that copying

FOSS code by commercial enterprises is now common.

However, in many cases, software developers lack the

understanding of legal risks associated with this activity.

In addition, their organizations lack policies to guide

them [30].

The FOSSology Project has been creating infras-

tructure to identify and visualize licenses in software

packages to aid in the identification of possible license

mismatches [9]. It does not, however, track the copying

of components. Based on German et al. [16], we demon-

strated that license auditing was a complex and difficult

process. Di Penta et al. [31] have studied how the license

of open software changed over time along with its impli-

cations.

German et al. [4] have studied the legal implications of

copying source code amount in open source kernels.

They used ccfinder to identify copied code and used
different versions of the software to determine in which

direction the copy was made. Their focus was on the

migration of code from one kernel to another and the

influence of licenses in these migration. Our work is an

extension of their paper. We defined a general method to

identify clones, including removal of false positives and

Table 9. Version history of clone getImageComponents method snippets

(a) GzScenePacker.java of Wonderland-Incubator project

Revision Commit date Committer Commit message License

r1.1 2008-09-18 morrisford *** empty log message *** X

(b) Two files of Lg3g-Wonderland project containing clones

Filename Revision Commit date Committer License Similarity

TextureFixer.java r1.1 2008-05-20 paulby GPL v2 0.136

r1.2 2008-05-21 paulby GPL v2 0.167

r1.3 2008-05-28 paulby GPL v2 0.167

ModelCompiler.java r1.1 2008-05-22 kaplanj GPL v2 0.142



Crowdsourcing Identification of License Violations

Sanghoon Lee et al. 201 http://jcse.kiise.org

the identification of license inconsistencies among copied

code. In addition, we developed a graphical representa-

tion to visualize the evolution of the clones and their

licensing. 

There are many studies on the origin, maintenance, and

evolution of clones [32-40]. Others have concentrated on

their lifespan and genealogy [41]. Our study is different

from those studies in that we studied cloning across

applications with focus on their licensing. More recently,

Ossher et al. [42] have used clone detection to quantify

cloning across applications. However, they did not study

the licensing implications of such copies. Machine

algorithms [8, 10] for clone detection have been used for

various applications such as API finding [43, 44], bug tri-

age [45], and code search engine [46-48].

German et al. [4] have reported the cloning in the ker-

nels focusing on the legal issues around it. Our paper was

influenced by that paper. We extended the work by look-

ing at a larger number of applications in a different

domain (Java). We also extended their method by creat-

ing an accidental clone classifier and formalized their

method in a decision diagram, a taxonomy of risk of vio-

lation, and the provenance diagrams. We also extended

the work of Di Penta et al. [31] by demonstrating that

licensing evolution was also a potential problem for those

who copied code before the license was upgraded. Ossher

et al. [42] have studied cloning in a large group of Java

software projects to quantify the amount of cloning and

to find reasons behind it. Our work extended their work

by trying to identify the source of the copy and by incor-

porating licensing and trying to determine when the clon-

ing might be inconsistent with the licensing or the source

of the system.

VII. CONCLUSIONS

We presented machine-based algorithms to systemati-

cally determine potential license violations and proposed

crowdsourcing as a scalable alternative to manual inspec-

tion by experts for those potential violations. Our

machine-based approach found 5,095 potential violations

from 219 projects among 286 subjects, suggesting that

license violation was a widespread problem. Our crowd-

sourcing framework enabled non-experts to identify

actual violations without compromising the accuracy. We

anticipate that the results herein will bring awareness of

this problem to researchers and practitioners.

ACKNOWLEDGMENTS

This work was supported by a grant of the Institute for

Information & Communications Technology Promotion

(IITP) funded by the Korea government (MSIP) (No.

10041244, SmartTV 2.0 Software Platform).

REFERENCES

1. N. J. Mertzel, “Copying 0.03 percent of software code base

not ‘de minimis’,” Journal of Intellectual Property Law &

Practice, vol. 9, no. 3, pp. 547-548, 2008.

2. K. Taylor, “Oracle Am., Inc. v. Google Inc. 750 F. 3d 1339

(Fed. Cir. 2014),” Intellectual Property Law Bulletin, vol. 19,

no. 2, pp. 221-223. 2014.

3. J. Krinke, N. Gold, Y. Jia, and D. Binkley, “Cloning and

copying between gnome projects,” in Proceedings of 7th

IEEE Working Conference on Mining Software Repositories

(MSR), Cape Town, South Africa, 2010, pp. 98-101. 

4. D. M. German, M. Di Penta, Y. G. Gueheneuc, and G. Anto-

niol, “Code siblings: technical and legal implications,” in

Proceedings of 6th IEEE International Working Conference

on Mining Software Repositories (MSR), Vancouver, Can-

ada, 2009, pp. 81-90.

5. M. Sojer and J. Henkel, “License risks from ad hoc reuse of

code from the internet,” Communications of the ACM, vol.

54, no. 12, pp. 74-81, 2011.

6. M. B. Jensen, Does Your Project Have a Copyright Prob-

lem? A Decision-Making Guide for Librarians. Jefferson,

NC: McFarland & Company, 1996.

7. L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard:

scalable and accurate tree-based detection of code clones,” in

Proceedings of the 29th international conference on Software

Engineering (ICSE’07), Minneapolis, MN, 2007, pp. 96-105.

8. M. W. Lee, J. W. Roh, S. W. Hwang, and S. Kim, “Instant

code clone search,” in Proceedings of the 18th ACM SIG-

SOFT International Symposium on the Foundations of Soft-

ware Engineering (FSE), Santa Fe, NM, 2010, pp. 167-176.

9. R. Gobeille, “The fossology project,” in Proceedings of the

2008 International Working Conference on Mining Software

Repositories (MSR), Leipzig, Germany, 2008, pp. 47-50.

10. T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multi-

linguistic token-based code clone detection system for large

scale source code,” IEEE Transactions on Software Engi-

neering, vol. 28, no. 7, pp. 654-670, 2002.

11. I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L.

Bier, “Clone detection using abstract syntax trees,” in Pro-

ceedings of the International Conference on Software Main-

tenance, Bethesda, MD, 1998, pp. 368-377.

12. C. J. C. Burges, “A tutorial on support vector machines for

pattern recognition,” Data Mining and Knowledge Discov-

ery, vol. 2, no. 2, pp. 121-167, 1998.

13. C. C. Chang and C. J. Lin, “LIBSVM: a library for support

vector machines,” https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

14. N. Krawetz, “Symbolic alignment matrix,” 2008; http://

www.fossology.org/projects/fossology/wiki/Symbolic_Alignment_

Matrix. 

15. D. M. German, Y. Manabe, and K. Inoue, “A sentence-

matching method for automatic license identification of

source code files,” in Proceedings of the IEEE/ACM Interna-

tional Conference on Automated Software Engineering,

Antwerp, Belgium, 2010, pp. 437-446.

16. D. M. German, M. Di Penta, and J. Davies, “Understanding

and auditing the licensing of open source software distribu-

tions,” in Proceedings of 18th International Conference on

Program Comprehension (ICPC), Braga, Portugal, 2010, pp.



Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 190-203

http://dx.doi.org/10.5626/JCSE.2015.9.4.190 202 Sanghoon Lee et al.

84-93.

17. A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourc-

ing systems on the world-wide web,” Communications of the

ACM, vol. 54, no. 4, pp. 86-96, 2011.

18. M. S. Bernstein, D. R. Karger, R. C. Miller, and J. Brandt,

“Analytic methods for optimizing realtime crowdsourcing,”

in Proceedings of Collective Intelligence 2012, Cambridge,

MA, 2012, pp. 1-8.

19. P. Welinder and P. Perona, “Online crowdsourcing: rating

annotators and obtaining cost-effective labels,” in Proceed-

ings of IEEE Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), San Francisco, CA, 2010,

pp. 25-32.

20. C. B. Eiben, J. B. Siegel, J. B. Bale, S. Cooper, F. Khatib, B.

W. Shen, F. Players, B. L. Stoddard, Z. Popovic, and D.

Baker, “Increased Diels-Alderase activity through backbone

remodeling guided by Foldit players,” Nature Biotechnol-

ogy, vol. 30, no. 2, pp. 190-192, 2012.

21. J. Lee, H. Cho, J. W. Park, Y. R. Cha, S. W. Hwang, Z. Nie,

and J. R. Wen, “Hybrid entity clustering using crowds and

data,” The VLDB Journal, vol. 22, no. 5, pp. 711-726, 2013.

22. M. Bayersdorfer, “Managing a project with open source

components,” Interactions, vol. 14, no. 6, pp. 33-34, 2007.

23. T. Madanmohan and R. De’, “Open source reuse in commer-

cial firms,” IEEE Software, vol. 21, no. 6, pp. 62-69, 2004.

24. C. Ruffin and C. Ebert, “Using open source software in

product development: a primer,” IEEE Software, vol. 21, no.

1, pp. 82-86, 2004.

25. Y. B. Dang, P. Cheng, L. Luo, and A. Cho, “A code prove-

nance management tool for IP-aware software develop-

ment,” in Proceedings of the 30th International Conference

on Software Engineering, Leipzig, Germany, 2008, pp. 975-976.

26. T. Alspaugh, H. U. Asuncion, and W. Scacchi, “Intellectual

property rights requirements for heterogeneously-licensed

systems,” in Proceedings of 17th IEEE International

Requirements Engineering Conference (RE’09), Atlanta, GA,

2009, pp. 24-33.

27. T. Alspaugh and W. Scacchi, “Heterogeneously-licensed system

requirements, acquisition and governance,” in Proceedings of

2nd International Workshop on Requirements Engineering

and Law (RELAW 2009), Atlanta, GA, 2009, pp. 13-14.

28. T. Alspaugh, H. U. Asuncion, and W. Scacchi, “The role of

software licenses in open architecture ecosystems,” in Pro-

ceedings of 1st International Workshop on Software Ecosys-

tems (IWSECO), Falls Church, VA, 2009, pp. 4-18.

29. M. Sojer and J. Henkel, “Code reuse in open source soft-

ware development: quantitative evidence, drivers, and

impediments,” Journal of the Association for Information

Systems, vol. 11, no. 12, pp. 868-901, 2010.

30. M. Sojer and J. Henkel, “License risks from ad hoc reuse of

code from the internet,” Communications of the ACM, vol.

54, no. 12, pp. 74-81, 2011.

31. M. Di Penta, D. M. German, Y. G. Gueheneuc, and G. Anto-

niol, “An exploratory study of the evolution of software

licensing,” in Proceedings of the 32nd ACM/IEEE Interna-

tional Conference on Software Engineering, Cape Town,

South Africa, 2010, pp. 145-154.

32. M. Godfrey and L. Zou, “Using origin analysis to detect

merging and splitting of source code entities,” IEEE Transac-

tions on Software Engineering, vol. 31, no. 2, pp. 166-181, 2005.

33. J. Krinke, “A study of consistent and inconsistent changes to

code clones,” in Proceedings of 14th Working Conference on

Reverse Engineering (WCRE), Vancouver, Canada, 2007, pp.

170-178.

34. J. Krinke, “Is cloned code more stable than non-cloned

code?,” in Proceedings of 8th IEEE International Working

Conference on Source Code Analysis and Manipulation,

Beijing, China, 2008, pp. 57-66.

35. A. Lozano, “A methodology to assess the impact of source

code flaws in changeability and its application to clones,” in

Proceedings of the International Conference of Software

Maintenance, Beijing, China, 2008, pp. 424-427.

36. A. Lozano, M. Wermelinger, and B. Nuseibeh, “Evaluating

the harmfulness of cloning: a change based experiment,” in

Proceedings of the 4th International Workshop on Mining

Software Repositories (MSR), Minneapolis, MN, 2007.

37. S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di

Penta, “An empirical study on the maintenance of source

code clones,” Empirical Software Engineering, vol. 15, no.

1, pp. 1-34, 2010.

38. C. Kapser and M. W. Godfrey, “Cloning considered harmful,”

considered harmful: patterns of cloning in software,” Empiri-

cal Software Engineering, vol. 13, no. 6, pp. 645-692, 2008.

39. R. Tiarks, R. Koschke, and R. Falke, “An assessment of

type-3 clones as detected by state-of-the-art tools,” in Pro-

ceedings of 9th IEEE International Workshop on Source

Code Analysis and Manipulation (SCAM), Edmonton, AB,

2009, pp. 67-76.

40. Y. Kashima, Y. Hayase, N. Yoshida, Y. Manabe, and K.

Inoue, “An investigation into the impact of software licenses

on copy-and-paste reuse among OSS projects,” in Proceed-

ings of 18th Working Conference on Reverse Engineering

(WCRE), Limerick, Ireland, 2011, pp. 28-32.

41. M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empir-

ical study of code clone genealogies,” ACM SIGSOFT Soft-

ware Engineering Notes, vol. 30, no. 5, pp. 187-196, 2005.

42. J. Ossher, H. Sajnani, and C. Lopes, “File cloning in open

source Java projects: the good, the bad, and the ugly,” in

Proceedings of the International Conference in Software

Maintenance, Williamsburg, VI, 2011, pp. 283-292.

43. J. Kim, S. Lee, S. W. Hwang, and S. Kim, “Adding exam-

ples into java documents,” in Proceedings of the 24th IEEE/

ACM International Conference on Automated Software Engi-

neering (ASE’09), Auckland, New Zealand, 2009, pp. 540-544.

44. J. Kim, S. Lee, S. W. Hwang, and S. Kim, “Enriching docu-

ments with examples: a corpus mining approach,” ACM

Transactions on Information Systems, vol. 31, no. 1, article

no. 1, 2013.

45. J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and S. Kim,

“CosTriage: a cost-aware triage algorithm for bug reporting

systems.” in Proceedings of 25th AAAI Conference on Artifi-

cial Intelligence (AAAI), San Francisco, CA, 2011.

46. J. Kim, S. Lee, S. W. Hwang, and S. Kim, “Towards an

intelligent code search engine,” in Proceedings of 24th AAAI

Conference on Artificial Intelligence (AAAI), Atlanta, GA, 2010.

47. M. W. Lee, S. W. Hwang, and S. Kim, “Integrating code

search into the development session,” in Proceedings of

2011 IEEE 27th International Conference on Data Engineer-



Crowdsourcing Identification of License Violations

Sanghoon Lee et al. 203 http://jcse.kiise.org

ing (ICDE), Hannover, Germany, 2011, pp. 1336-1339.

48. J. W. Park, M. W. Lee, J. W. Roh, S. W. Hwang, and S.

Kim, “Surfacing code in the dark: an instant clone search

approach,” Knowledge and Information Systems, vol. 41, no.

3, pp. 727-759, 2014.

Sanghoon Lee

Sanghoon Lee is a Ph.D. student in the Department of Computer Science and Engineering at Pohang
University of Science and Technology, Korea. He received his B.S. degree from Kyungpook National
University, Korea in 2009. His research areas are instance matching, entity detection, linking in data science,
and clone code detection in software engineering.

Daniel German

Daniel German is a Professor in the Department of Computer Science at University of Victoria, Canada. He
completed his Ph.D. at University of Waterloo in 2000. His research areas are mining software repositories,
open source, and intellectual property in software engineering. For more information, visit http://
turingmachine.org

Seung-won Hwang 

Seung-won Hwang is a Professor in the Department of Computer Science at Yonsei University, Korea. She
completed her Ph.D. at University of Illinois Urbana-Champaign in 2005. Her research areas are data (-driven)
intelligence, knowledge graph, search engines, query optimization, and language understanding in data
science. For more information, visit http://dilab.yonsei.ac.kr/~swhwang/

Sunghun Kim

Sunghun Kim is an Associate Professor in the Department of Computer Science and Engineering at Hong
Kong University of Science and Technology, China. He completed his Ph.D. at University of California, Santa
Cruz in 2006. His research areas are repository data mining, software testing, dynamic and static analysis in
software engineering. For more information, visit https://www.cse.ust.hk/~hunkim/


