DOI QR코드

DOI QR Code

만곡수로 내의 호안 안정성 연구

A Study on Stability of Levee Revetment in Meandering Channel

  • 김수영 (한국건설기술연구원 수자원.하천연구소) ;
  • 윤광석 (한국건설기술연구원 수자원.하천연구소) ;
  • 김형준 (한국건설기술연구원 수자원.하천연구소)
  • Kim, Sooyoung (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Yoon, Kwang Seok (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Hyung-Jun (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2015.11.16
  • 심사 : 2015.12.04
  • 발행 : 2015.12.31

초록

제방은 홍수가 발생했을 때 하천의 범람을 막아 제내지의 인명, 가옥, 재산 등을 보호하는 중요한 기능을 하는 하천구조물이다. 제방의 붕괴원인은 크게 월류에 의한 붕괴, 침투에 의한 붕괴, 침식에 의한 붕괴로 분류되며, 침식에 의한 붕괴를 방지하기 위하여 호안을 설치한다. 따라서, 이러한 호안의 안정성은 제방 전체의 안정성과 직결되는 중요한 요소이다. 특히, 흐름의 강도가 증가하는 만곡부와 같은 수충부에서는 호안의 안정성이 급격히 저하되므로 이에 대한 연구가 필요한 실정이다. 따라서, 본 연구에서는 경질성 호안의 수리실험을 통해 만곡수로에 설치된 호안의 취약지점을 파악하였으며 주요 지점의 유속과 수위를 측정하였다. 또한, 동일한 조건으로 3차원 수치해석을 수행하여 실험에서 계측장비의 한계로 확인하기 어려운 흐름특성을 분석하였다. 그 결과 제방사면의 전단응력이 크게 산정된 부분과 사석호안이 붕괴된 위치가 거의 일치하는 것으로 나타났으며 전단응력은 작으나 붕괴가 발생한 지점에서는 만곡의 영향으로 발생한 2차류에 의해 순환흐름이 발생되어 호안의 붕괴를 유발하는 것으로 나타났다. 기존의 사석산정공식을 이용하여 사석호안의 규모를 결정하였으며 하도의 평균유속보다 국부적인 최대유속으로 산정하였을 때, 1.5~4.7배 크게 산정되었다. 본 연구를 통해 만곡수로에서는 직선수로에서와는 사석의 규모를 산정하는 방법을 달리해야하는 것을 알 수 있었으며, 추후 곡률반경 및 구조물에 대한 영향을 고려하고 대표형상에 대한 가중치를 부여 할 수 있으면 보다 합리적이고 정확한 호안사석의 규모를 결정할 수 있을 것으로 예상된다.

The levee protect lifes, houses, and properties by blocking overflow of river. The revetment is forced to be covered on the slope of levee in order to prevent erosion. The stability of revetment is very important enough to directly connected to the stability of levee. In this study, the weak points of revetment on meandering channel were found by movable revetment experiment and the velocity and the water surface elevation (WSE) were measured at main points. The 3-D numerical simulations were performed under same conditions with experiment. And unclear flow characteristics by the limit of measuring instruments were analyzed through numerical simulation. Consequently, the section of large wall shear stress and the failure section are almost the same. Despite of small wall shear stress, the revetments located at right bank were carried away because of circulation zone due to secondary flow by meandering. With existing riprap design formula, the sizes of riprap determined using maximum local velocity were 1.5~4.7 times greater than them using mean velocity. As a result of this study, it is necessary to calculate the size of riprap in other ways for meandering and straight channel. At a later study, if the weighted value considered the radius of curvature and shape of hydraulic structure is applied to riprap design formula, it is expected that the size of revetment was evaluated rationally and accurately.

키워드

참고문헌

  1. ANSYS Inc. (2010). ANSYS CFX-solver theory guide. ANSYS release 13.0.
  2. Bae, S.S., Lee, S.Y., and Jee, H.K. (2008). "Study on Critical Allowable Shear Stress of Filling Rocks with Mattress Revetment." Journal of Korea Water Resources Association, Vol. 41, No. 2, pp. 137-147. https://doi.org/10.3741/JKWRA.2008.41.2.137
  3. Blanckaert, K., and Graf, W.H. (2001). "Mean flow and turbulence in open-channel bend." Journal of Hydraulic Engineering, Vol. 127, No. 10, pp. 835-847. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:10(835)
  4. Escarameia, M., and May, R.W.P. (1992). "Channel protection- Turbulence downstream of structures. Report SR 313" HR Wallingford.
  5. Huang, S.L., Jia, Y.F., Hsun-Chuan, C.H.A.N., and Sam, S.Y. (2009). "Three-dimensional numerical modeling of secondary flows in a wide curved channel." Journal of Hydrodynamics, Ser. B, Vol. 21, No. 6, pp. 758-766. https://doi.org/10.1016/S1001-6058(08)60210-3
  6. Isbash, S.V. (1935). "Construction of dams by dumping stones in flowing water Translated by A. Dorijikov." U.S. Army Engineering District, Eastport, Me.
  7. Japan Institute of Country-ology and Engineering (2007). Dynamic Design of Revetments, Sankaido.
  8. Kim, Y.H., Park, N.H., Jin, Y.H., and Kim, C. (2007). "Development and Application of Evaluation Technique for Revetment for Nature-Friendly River Improvement." Journal ofKorea Water Resources Association, Vol. 40, No. 12, pp. 1007-1014. https://doi.org/10.3741/JKWRA.2007.40.12.1007
  9. Kim, H.J., and Yoon, K.S. (2014). "Suggestion of Riprap Revetments Design Techniques considering River Meandering." Journal of Korean Society of Hazard Mitigation, Vol. 14, No. 6(Dec. 2014), pp. 405-411. https://doi.org/10.9798/KOSHAM.2014.14.6.405
  10. Korea Water Resources Association (2009). River Design Criteria.
  11. Maynord, S.T. (1993). Corps Riprap Design Guidance for Channel Protection, Coastal and Shoreline Protection: Erosion Control Using Riprap and Armourstone, pp. 41-52.
  12. Pilarczyk, K.W. (1990). "Stability Criteria for Revetments, Hydraulic Engineering." Proceedings of the 1990 National Conference, American Society of Civil Engineers, New York. pp. 245-250.
  13. Shams, M., Ahmadi, G., and Smith, D.H. (2002). "Computational modeling of flow and sediment transport and deposition in meandering rivers." Advances in Water Resources, Vol. 25, No. 6, pp. 689-699. https://doi.org/10.1016/S0309-1708(02)00034-9
  14. Simons, D.B., Chen, Y.H., and Swenson, L.J. (1984). "Hydraulic test to develop design criteria for the use of reno mattresses." Simons and associates.
  15. Stoesser, T., Ruether, N., and Olsen, N.R.B. (2010). "Calculation of primary and secondary flow and boundary shear stresses in a meandering channel." Advances in Water Resources, Vol. 33, No. 2, pp. 158-170. https://doi.org/10.1016/j.advwatres.2009.11.001