DOI QR코드

DOI QR Code

Determination of Optimal Hourly Water Intake Amount for H Arisu Purification Center using Linear Programming

선형계획법을 이용한 H 아리수 정수 센터 최적 취수량 결정

  • Lee, Chulsoo (Department of Industrial and Information Systems Engineering, Seoul National University of Science&Technology) ;
  • Lee, Kangwon (Department of Industrial and Information Systems Engineering, Seoul National University of Science&Technology)
  • 이철수 (서울과학기술대학교 글로벌융합산업공학과) ;
  • 이강원 (서울과학기술대학교 글로벌융합산업공학과)
  • Received : 2015.09.11
  • Accepted : 2015.10.23
  • Published : 2015.12.31

Abstract

Currently, the H purification plant determines the hourly water intake amount based on operator experience and skill. Therefore, inevitably, there are deviations among operators. While meeting time-varying demand and maintaining the proper water level in the clean water reservoir, the methodology for minimizing electricity cost, when dealing with different electricity rate time zones, is a very complicated problem, which is beyond an operator's capability. To solve this problem, a linear programming (LP) model is proposed, which can determine the optimal hourly water intake amount for minimizing the daily electricity cost. It is shown that an inaccurate estimate for the hourly water usage in the demand areas causes the water level constraint to be violated, which is the weak point of the proposed LP method. However, several examples with real-field data show that we can practically and safely solve this problem with safety margins. It is also shown that the safety margin method still works effectively whether the estimate is accurate or not. The operators need not attend the site at all times under the proposed LP method, and we can additionally expect reductions in labor costs.

본 논문은 선형계획모형을 이용하여 H 아리수 정수 센터의 최적 취수량 결정 방법을 연구 하였다. 현재 H 아리수 센터에서는 관리자의 경험과 숙련도에 의지하여 취수량을 결정하고 있다. 그런데 매시 변하는 수요를 만족 시키면서 시간대별로 요금이 서로 다른 전력의 사용을 최소화 하는 취수량 결정은 근무자들의 경험과 숙련도를 넘어서는 간단한 문제가 아니다. 따라서 수리적 기법 중 하나인 선형계획모형을 이용해 취수량을 결정하고, 비용 절감을 시도하였다. 본 연구에서 제안한 선형계획 모형은 수요예측치를 기본 입력자료로 사용하고 있는데 예측오차가 발생할 경우 정수지 높이 제한을 위반하는 경우가 발생한다. 이를 해결하기 위해서는 정확한 수요예측이 선행되어야 한다. 그러나 아무리 좋은 예측 기법을 사용하더라도 실수요와 오차는 있게 마련이고 이는 여전히 높이 제한의 제약을 만족 시키지 못하는 결과를 불러일으킨다. 따라서 예측오차를 수용 할 수 있는 안전 마진 상수를 이용한 대안을 제안하였다. 본 연구에서 제안한 선형 계획 모형을 통한 취수량 결정은 수위 모니터링을 위해 항시 작업자가 근무 할 필요가 없기 때문에 인건비 면에서도 많은 절약이 예측되어 총 비용 감축은 훨씬 더 많으리라 기대된다.

Keywords

References

  1. (http://arisu.seoul.go.kr/arisu_center/center1/sub1_3.jsp).
  2. (http:/cyber.kepco.co.kr/ckepco/front/jsp/CY/E/E/CYE EHP00103.jsp).
  3. Agresti, A. (1996). "An Introduction to categorical data analysis. (1st ed.)." Florida : JohnWiley&Sons, (Chapter 4).
  4. Box, G.E.P., and Draper, N.R. (1998). "Evolutionary operation: a statistical method for process improvement. (2nd ed.)." WILEY, (Chapter 2).
  5. Ferreira, A.R., and Teegavarapu, R.S.V. (2012). "Optimal and adaptive operation of a hydropower system with unit commitment and water quality constraint." Water Resources Management, Vol. 26, No. 3, pp. 707-732. https://doi.org/10.1007/s11269-011-9940-9
  6. H Arisu Purification Center (2015). "Major operational plan."
  7. H Arisu Purification Center 1) (2013.9-2014.4). "Daily electrical power report."
  8. H Arisu Purification Center 2) (2013.9-2014.4). "Daily flow report."
  9. H Arisu Purification Center 3) (2013.9-2014.4). "Daily water level report."
  10. Han, Y., Huang, Y., Jia, S., and Liu, J. (2013). "An interval parameter fuzzy linear programming with stochastic vertices model for water resource management under uncertainty." Mathematical Problems in Engineering, Vol. 2013, Article ID 942343, 12 pages.
  11. Heydari, M., Othman, F., and Quaderi, K. (2015). "Introduction to linear programming as a popular tool in optimal reservoir operation, a review." Advances in Engineering Biology, Vol. 9, No. 3, pp. 906-917.
  12. Heydari, M., Othman, F., Quaderi, K., nori, M., and Shahirparsa, A. (2015). "Developing optimal reservoir operation for multiple and multipurpose reservoirs using mathematical programming." Mathematical Problems in Engineering, Vol. 2015, Article ID 435752, 11 pages.
  13. Jung, J.K., and Lee, K.W.(2014). "Study on the optimal design of microgrid system using linear programming." Journal of the Korea Management Engineers Society, Vol. 19, No. 4, pp. 59-74.
  14. KEPCO (2015). "Electricity Rate Table."
  15. Mena, J.A. (2012). "The optimal organization structure design problem in make-to-order enterprises." International Journal of Industrial Engineering, Vol. 19, No. 4, pp. 181-192.
  16. Morais, H., Kadar, P., Faria, P., Vale, A., and Khodr. H. (2010). "Optimal scheduling of a renewable microgrid in an isolated load area using mixed-integer linear programming." Renewable Energy, Vol. 35, No. 1, pp. 151-156. https://doi.org/10.1016/j.renene.2009.02.031
  17. Tseng, T.L., Rosales, C.L., and Kwon, Y.J. (2014). "Optimization of wind turbine placement layout on non-flat terrains." International Journal of Industrial Engineering, Vol. 21, No. 6, pp. 384-395.
  18. Zhao, T., and Zhao, J. (2014). "Optimization operation of water supply reservoir: the role of constraints." Mathematical Problems in Engineering, Vol. 2014, Article ID 853186, 15pages.