DOI QR코드

DOI QR Code

A Study on Flame Extinction in Oxymethane Combustion

메탄 산소 연소에 있어서 화염 소화에 대한 연구

  • Kim, Tae Hyung (Power Generation Research Laboratory, Korea Electric Power Research Institute) ;
  • Kwon, Oh Boong (Dept. of Mechanical Engineering, Pukyoung National University) ;
  • Park, Jeong (Dept. of Mechanical Engineering, Pukyoung National University) ;
  • Keel, Sang-In (Environment & Energy Research Division, Korea Institute of Machinery and Materials) ;
  • Yun, Jin-Han (Environment & Energy Research Division, Korea Institute of Machinery and Materials) ;
  • Park, Jong Ho (Dept. of Mechanical Engineering, Chungnam National University)
  • 김태형 (한전전력연구원 발전연구소) ;
  • 권오붕 (부경대학교 기계공학과) ;
  • 박정 (부경대학교 기계공학과) ;
  • 길상인 (한국기계연구원 환경에너지기계시스템연구부) ;
  • 윤진한 (한국기계연구원 환경에너지기계시스템연구부) ;
  • 박종호 (충남대학교 기계공학과)
  • Received : 2015.09.11
  • Accepted : 2015.12.05
  • Published : 2015.12.30

Abstract

Oxy-methane nonpremixed flames diluted with $CO_2$ were investigated to clarify impact of radiation heat loss and chemical effects of additional $CO_2$ to oxidizer stream on flame extinction. Flame stability maps were presented with functional dependencies of critical diluents mole fraction upon global strain rate at several oxidizer stream temperatures in $CH_4-O_2/N_2$, $CH_4-O_2/CO_2$, and $CH_4-O_2/CO_2/N_2$ counterflow flames. The effects of radiation heat loss on the critical diluent mole fractions for flame extinction are not significant even at low strain rate in nonpremixed $CH_4-O_2/N_2$ diffusion flame, whereas those are significant at low strain rate and are negligible at high strain rate (> $200s^{-1}$) in $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ counterflow flames. Chemical effects of additional $CO_2$ to oxidizer stream on the flame extinction curves were appreciable in both $CH_4-O_2/CO_2$ and $CH_4-O_2/CO_2/N_2$ flames. A scaling analysis based on asymptotic solution of stretched flame extinction was applied. A specific radical index, which could reflect the OH population in main reaction zone via controlling the mixture composition in the oxidizer stream, was identified to quantify the chemical kinetic contribution to flame extinction. A good correlation of predicted extinction limits to those calculated numerically were obtained via the ratio between radical indices and oxidizer Lewis numbers for the target and baseline flames. This offered an effective approach to estimate extinction strain rate of nonpremixed oxy-methane flames permitting air infiltration when the baseline flame was taken to nonpremixed $CH_4-O_2/N_2$ flame.

Keywords

References

  1. A. Molina, C. R. Shaddix. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc Combust Inst, 31 (2007), pp. 1905-1912. https://doi.org/10.1016/j.proci.2006.08.102
  2. C. R. Shaddix, A. Molina. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc Combust Inst, 32 (2009), pp. 2091-2098. https://doi.org/10.1016/j.proci.2008.06.157
  3. J. Zhang, Takamasa, S. Ito, D. Riechelmann, T. Fujimori. Numerical investigation of oxy-coal combustion in a large-scale furnace: non-gray effect of gas and role of particle radiation. Fuel, 139 (2015) 87-93. https://doi.org/10.1016/j.fuel.2014.08.020
  4. J. Rizza, R. Kharami, Y. A. Levendis, Alvarez, M. V. Gil, C. Pevida, F. Rubiera, J. J. Pis. Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combust Flame, 161 (2014), pp. 1096-1108. https://doi.org/10.1016/j.combustflame.2013.10.004
  5. Y. Tan, M.A. Douglas, E. Croiset, E. Thambimuthu. $CO_2 $ capture using oxygen enhanced combustion strategies for natural gas power plants. Fuel, 81 (2002), pp. 1007-1016. https://doi.org/10.1016/S0016-2361(02)00014-5
  6. J. Park, J.S. Park, H.P Kim, J.S. Kim, S.C. Kim, J.G. Choi, H.C. Cho, K.W. Cho, H.S. Park. NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide. Energy & Fuels, 21 (2007), pp. 121-129. https://doi.org/10.1021/ef060309p
  7. F. Liu, H. Guo, G.J. Smallwood. The chemical effect of $CO_2 $ replacement of $N_2 $ in air on the burning velocity of $CH_2 $ and $H_2 $ premixed flames. Combust. Flame, 133 (2003), pp.495-497. https://doi.org/10.1016/S0010-2180(03)00019-1
  8. Z. Chen, X. Qin, B. Xu, Y. Ju, F. Liu. Studies of radiation absorption on flame speed and flammability limit of $CO_2 $ diluted methane flames at elevated pressures. Proc. Combust. Inst., 31 (2007), pp. 2693-2700. https://doi.org/10.1016/j.proci.2006.07.202
  9. K. Maruta, K. Abe, S. Hasegawa, S. Maruyama, J. Sato. Extinction characteristics of $CH_4/CO_2 $ versus $O_4/CO_2 $ counterflow non-premixed flames at elevated pressures up to 0.7 MPa. Proc. Combust. Inst., 31 (2007), pp. 1223-1230. https://doi.org/10.1016/j.proci.2006.08.013
  10. P. Glaeborg, L.B. Bentze. Chemical Effects of a High $CO_2$ Concentration in Oxy-Fuel Combustion of Methane. Energy & Fuels, 22 (2008), pp. 291- 296. https://doi.org/10.1021/ef7005854
  11. M. Nishioka, C.K. Law, T. Takeno. A Flame-controlling continuation method for generating S-curve responses with detailed chemistry. Combust. Flame, 104 (1996), pp. 328-342. https://doi.org/10.1016/0010-2180(95)00132-8
  12. R.J. Kee, A. Miller, G.H. Evans, G. Dixon_lewis. A computational model of the structure and extinction of starined, opposed flow, premixed methaneair flames. Prod. Combust. Inst., 22 (1988). Pp. 1479-1494.
  13. K. Maruta, M. Yoshida, H. Guo, Y. Ju, T. Niioka. Extinction of low-stretched diffusion flame in microgravity. Combust. Flame, 112 (1998), pp. 181- 187. https://doi.org/10.1016/S0010-2180(97)81766-X
  14. J.S. Park, D. J. Hwang, J. Park, J.S. Kim, S.C. Kim, S.I. Keel, K.T. Kim, and D.S. Noh. Edge flame instability in low strain rate counterflow diffusion flame. Combust. Flame, 146 (2006), pp. 612-619. https://doi.org/10.1016/j.combustflame.2006.06.009
  15. C. B. Oh, A. Hamins, M. Bundy, J. Park. The Twodimensional structure of low strain rate counterflow non-premixed methane flames in normal and microgravity. Combust. Flame Modelling, 12 (2008), pp. 283-302. https://doi.org/10.1080/13647830701642201
  16. D.G. Park, J.H. Yun, J. Park, and S.I. Keel. A study on flame extinction characteristics along a C-curve. Energy & Fuels, 23 (2009), pp. 4236-4244. https://doi.org/10.1021/ef900138u
  17. Y.H. Chung, D.G. Park, J.H. Yun, J. Park, O.B. Kwon, S.I. Keel. Role of outer edge flame on flame extinction in nitrogen-diluted nonpremixed counterflow flames with finite burner diameters. Fuel, 205 (2013), pp.540-550.
  18. S.H. Won, S. Dooley, F.L. Dryer, Y. Ju. A radical index for the determination of the chemical kinetic contribution to diffusion flame extinction of large hydrocarbon fuels. Combust. Flame, 159 (2012), pp. 541-551. https://doi.org/10.1016/j.combustflame.2011.08.020
  19. R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon- Lewis. A computational model of the structure and extinction of strained, opposed flow, premixed methane-are flame, Proc Combust Inst, 22 (1988), pp.1479-1494.
  20. A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley. A fortran program for computing opposed-flow diffusion flames, Sandia National Laboratories Report. SAND 96-8243 (1997).
  21. Y. Ju, H. Guo, K. Maruta, F. Liu. On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames, J Fluid Mech, 342 (1997), p.315. https://doi.org/10.1017/S0022112097005636
  22. R. J. Kee, F. M. Rupley, J. A. Miller, Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics, Sandia National Laboratories Report. SAND 89-8009B (1989).
  23. R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J. A. Miller, A fortran computer code package for the evaluation of gas-phase multi-component transport. Sandia National Laboratories Report. SAND86-8246 (1994).
  24. X. Li, L. Jia, T. Onishi, P. Grajetzki, H. Nakamura, T. Tezuka, S. Hasegawa, K. Maruta. Study on stretch extinction limits of $CH_4/O_2 $ versus high temperature $O_2/CO_2$ counterflow non-premixed flames. Combust. Flame, 161 (2014), pp. 1526-1536. https://doi.org/10.1016/j.combustflame.2013.12.004
  25. S.W. Jung, J. Park, O.B. Kwon, Y.J. Kim, S.I. Keel, J.H. Yun, I.G. Lim. Effects of $CO_2$ addition on flame extinction in interacting $H_2$-air and CO-air premixed flames. Fuel, 136 (2014), pp. 69-78. https://doi.org/10.1016/j.fuel.2014.07.009
  26. Z. Chen, X. Qin, Y. Ju, F. Liu. Studies of radiation absorption on flame spread and flammability of $CO_2$ diluted methane flames at elevated pressures. Proc. Combust. Inst., 31 (2007), pp. 2693-700. https://doi.org/10.1016/j.proci.2006.07.202
  27. A. Linan. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astrronaut, 1 (1974), pp.1007-1039. https://doi.org/10.1016/0094-5765(74)90066-6
  28. F. Liu, G.J. Samllwood, O.L. Gulder, Y. Ju. Asymptotic analysis of radiative extinction in counterflow diffusion flames of nonunity Lewis numbers. Combust. Flame, 121 (2000), pp.275-287. https://doi.org/10.1016/S0010-2180(99)00143-1
  29. http://navier.engr.colostate.edu/-dandy/co de/

Cited by

  1. A Numerical Study on Pressure Variation in a Shock Tube by Changing the Diameter Ratio of Low-Pressure (Driven) to High-Pressure (Driver) Part vol.21, pp.4, 2016, https://doi.org/10.15231/jksc.2016.21.4.016