References
- A. Molina, C. R. Shaddix. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc Combust Inst, 31 (2007), pp. 1905-1912. https://doi.org/10.1016/j.proci.2006.08.102
- C. R. Shaddix, A. Molina. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc Combust Inst, 32 (2009), pp. 2091-2098. https://doi.org/10.1016/j.proci.2008.06.157
- J. Zhang, Takamasa, S. Ito, D. Riechelmann, T. Fujimori. Numerical investigation of oxy-coal combustion in a large-scale furnace: non-gray effect of gas and role of particle radiation. Fuel, 139 (2015) 87-93. https://doi.org/10.1016/j.fuel.2014.08.020
- J. Rizza, R. Kharami, Y. A. Levendis, Alvarez, M. V. Gil, C. Pevida, F. Rubiera, J. J. Pis. Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combust Flame, 161 (2014), pp. 1096-1108. https://doi.org/10.1016/j.combustflame.2013.10.004
-
Y. Tan, M.A. Douglas, E. Croiset, E. Thambimuthu.
$CO_2 $ capture using oxygen enhanced combustion strategies for natural gas power plants. Fuel, 81 (2002), pp. 1007-1016. https://doi.org/10.1016/S0016-2361(02)00014-5 - J. Park, J.S. Park, H.P Kim, J.S. Kim, S.C. Kim, J.G. Choi, H.C. Cho, K.W. Cho, H.S. Park. NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide. Energy & Fuels, 21 (2007), pp. 121-129. https://doi.org/10.1021/ef060309p
-
F. Liu, H. Guo, G.J. Smallwood. The chemical effect of
$CO_2 $ replacement of$N_2 $ in air on the burning velocity of$CH_2 $ and$H_2 $ premixed flames. Combust. Flame, 133 (2003), pp.495-497. https://doi.org/10.1016/S0010-2180(03)00019-1 -
Z. Chen, X. Qin, B. Xu, Y. Ju, F. Liu. Studies of radiation absorption on flame speed and flammability limit of
$CO_2 $ diluted methane flames at elevated pressures. Proc. Combust. Inst., 31 (2007), pp. 2693-2700. https://doi.org/10.1016/j.proci.2006.07.202 -
K. Maruta, K. Abe, S. Hasegawa, S. Maruyama, J. Sato. Extinction characteristics of
$CH_4/CO_2 $ versus$O_4/CO_2 $ counterflow non-premixed flames at elevated pressures up to 0.7 MPa. Proc. Combust. Inst., 31 (2007), pp. 1223-1230. https://doi.org/10.1016/j.proci.2006.08.013 -
P. Glaeborg, L.B. Bentze. Chemical Effects of a High
$CO_2$ Concentration in Oxy-Fuel Combustion of Methane. Energy & Fuels, 22 (2008), pp. 291- 296. https://doi.org/10.1021/ef7005854 - M. Nishioka, C.K. Law, T. Takeno. A Flame-controlling continuation method for generating S-curve responses with detailed chemistry. Combust. Flame, 104 (1996), pp. 328-342. https://doi.org/10.1016/0010-2180(95)00132-8
- R.J. Kee, A. Miller, G.H. Evans, G. Dixon_lewis. A computational model of the structure and extinction of starined, opposed flow, premixed methaneair flames. Prod. Combust. Inst., 22 (1988). Pp. 1479-1494.
- K. Maruta, M. Yoshida, H. Guo, Y. Ju, T. Niioka. Extinction of low-stretched diffusion flame in microgravity. Combust. Flame, 112 (1998), pp. 181- 187. https://doi.org/10.1016/S0010-2180(97)81766-X
- J.S. Park, D. J. Hwang, J. Park, J.S. Kim, S.C. Kim, S.I. Keel, K.T. Kim, and D.S. Noh. Edge flame instability in low strain rate counterflow diffusion flame. Combust. Flame, 146 (2006), pp. 612-619. https://doi.org/10.1016/j.combustflame.2006.06.009
- C. B. Oh, A. Hamins, M. Bundy, J. Park. The Twodimensional structure of low strain rate counterflow non-premixed methane flames in normal and microgravity. Combust. Flame Modelling, 12 (2008), pp. 283-302. https://doi.org/10.1080/13647830701642201
- D.G. Park, J.H. Yun, J. Park, and S.I. Keel. A study on flame extinction characteristics along a C-curve. Energy & Fuels, 23 (2009), pp. 4236-4244. https://doi.org/10.1021/ef900138u
- Y.H. Chung, D.G. Park, J.H. Yun, J. Park, O.B. Kwon, S.I. Keel. Role of outer edge flame on flame extinction in nitrogen-diluted nonpremixed counterflow flames with finite burner diameters. Fuel, 205 (2013), pp.540-550.
- S.H. Won, S. Dooley, F.L. Dryer, Y. Ju. A radical index for the determination of the chemical kinetic contribution to diffusion flame extinction of large hydrocarbon fuels. Combust. Flame, 159 (2012), pp. 541-551. https://doi.org/10.1016/j.combustflame.2011.08.020
- R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon- Lewis. A computational model of the structure and extinction of strained, opposed flow, premixed methane-are flame, Proc Combust Inst, 22 (1988), pp.1479-1494.
- A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley. A fortran program for computing opposed-flow diffusion flames, Sandia National Laboratories Report. SAND 96-8243 (1997).
- Y. Ju, H. Guo, K. Maruta, F. Liu. On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames, J Fluid Mech, 342 (1997), p.315. https://doi.org/10.1017/S0022112097005636
- R. J. Kee, F. M. Rupley, J. A. Miller, Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics, Sandia National Laboratories Report. SAND 89-8009B (1989).
- R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J. A. Miller, A fortran computer code package for the evaluation of gas-phase multi-component transport. Sandia National Laboratories Report. SAND86-8246 (1994).
-
X. Li, L. Jia, T. Onishi, P. Grajetzki, H. Nakamura, T. Tezuka, S. Hasegawa, K. Maruta. Study on stretch extinction limits of
$CH_4/O_2 $ versus high temperature$O_2/CO_2$ counterflow non-premixed flames. Combust. Flame, 161 (2014), pp. 1526-1536. https://doi.org/10.1016/j.combustflame.2013.12.004 -
S.W. Jung, J. Park, O.B. Kwon, Y.J. Kim, S.I. Keel, J.H. Yun, I.G. Lim. Effects of
$CO_2$ addition on flame extinction in interacting$H_2$ -air and CO-air premixed flames. Fuel, 136 (2014), pp. 69-78. https://doi.org/10.1016/j.fuel.2014.07.009 -
Z. Chen, X. Qin, Y. Ju, F. Liu. Studies of radiation absorption on flame spread and flammability of
$CO_2$ diluted methane flames at elevated pressures. Proc. Combust. Inst., 31 (2007), pp. 2693-700. https://doi.org/10.1016/j.proci.2006.07.202 - A. Linan. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astrronaut, 1 (1974), pp.1007-1039. https://doi.org/10.1016/0094-5765(74)90066-6
- F. Liu, G.J. Samllwood, O.L. Gulder, Y. Ju. Asymptotic analysis of radiative extinction in counterflow diffusion flames of nonunity Lewis numbers. Combust. Flame, 121 (2000), pp.275-287. https://doi.org/10.1016/S0010-2180(99)00143-1
- http://navier.engr.colostate.edu/-dandy/co de/
Cited by
- A Numerical Study on Pressure Variation in a Shock Tube by Changing the Diameter Ratio of Low-Pressure (Driven) to High-Pressure (Driver) Part vol.21, pp.4, 2016, https://doi.org/10.15231/jksc.2016.21.4.016