DOI QR코드

DOI QR Code

Reduction of Electromagnetic Force in AC Distributed Winding of Fault Current Limiter under Short-Circuit Condition

  • Ghabeli, Asef (Young Researchers and Elite Club, Sari Branch, Islamic Azad University) ;
  • Yazdani-Asrami, Mohammad (Young Researchers and Elite Club, Sari Branch, Islamic Azad University) ;
  • Doroudi, Aref (Faculty of Electrical Engineering, Shahed University) ;
  • Gholamian, S. Asghar (Electrical Machinery Laboratory, Faculty of Electrical and Computer Engineering, Babol University of Technology)
  • Received : 2015.06.10
  • Accepted : 2015.07.22
  • Published : 2015.12.31

Abstract

Various kinds of winding arrangements can be used to enable fault current limiters (FCL) to tolerate higher forces without resulting in a substantial increase in construction and fabrication costs. In this paper, a distributed winding arrangement is investigated in terms of its effects on the short-circuit forces in a three-phase FCL. The force magnitudes of the AC supplied windings are calculated by employing a finite element-based model in the time stepping procedure. The leakage flux and radial and axial force magnitudes obtained from the simulation are compared to those obtained from a conventional winding arrangement. The comparison shows that the distributed winding arrangement significantly reduces the radial and, especially, the axial force magnitudes.

Keywords

References

  1. Kalsi, Swarn S. and Alex Malozemoff, Power Engineering Society General Meeting 2, 1426 (2004).
  2. Y. Xin, W. Gong, X. Niu, Z. Cao, J. Zhang, B. Tian, H. Xi, Y. Wang, H. Hong, Y. Zhang, B. Hou, and X. Yang, IEEE Trans. Appl. Supercond. 17, 1760 (2007). https://doi.org/10.1109/TASC.2007.898181
  3. Abdul Rahman, T. T. Lie, and K. Prasad, IEEE Trans. Appl. Supercond. 22, 5501211 (2012). https://doi.org/10.1109/TASC.2012.2221089
  4. Abdul Rahman, T. T. Lie, and K. Prasad, IEEE Trans. Appl. Supercond. 22, 5500108 (2012). https://doi.org/10.1109/TASC.2011.2173571
  5. Nadim Mahomed, Energize 12, 36 (2011).
  6. G. B. Kumbhar and S. V. Kulkarni, IEEE Trans. Power Delivery 22, 936 (2007). https://doi.org/10.1109/TPWRD.2007.893442
  7. G. P. Peter, International Journal of Advancements in Technology 2, 142 (2011).
  8. Jawad Faiz, Bashir Mahdi Ebrahimi, and Tahere Noori, IEEE Trans. Magn. 44, 590 (2008). https://doi.org/10.1109/TMAG.2008.917819
  9. H. M. Ahn, J. Y. Lee, J. K. Kim, Y. H. Oh, S. Y. Jung, and S. C. Hahn, IEEE Trans. Ind. Appl. 47, 1267 (2011). https://doi.org/10.1109/TIA.2011.2126031
  10. Heydari, Hossein, and Faramarz Faghihi, IEEE Trans. Appl. Supercond. 20, 2276 (2010). https://doi.org/10.1109/TASC.2010.2049356
  11. S. L. Ho, Y. Li, Ho-ching Chris Wong, S. H. Wang, and R. Y. Tang, IEEE Trans. Magn. 40, 687 (2004). https://doi.org/10.1109/TMAG.2004.824801
  12. G. Bertagnolli, ABB Ltd. (2007).
  13. Hyun-Mo Ahn, Yeon-Ho Oh, Joong-Kyoung Kim, Jae- Sung Song, and Sung-Chin Hahn, IEEE Trans. Magn. 48, 819 (2012). https://doi.org/10.1109/TMAG.2011.2174212