References
-
Asilturk M, Sayilkan F, Erdemoglu S, et al. Characterization of the hydrothermally synthesized nano-
$TiO_2$ crystallite and the photocatalytic degradation of Rhodamine B. J. Hazard. Mater. 2006;129:164-170. https://doi.org/10.1016/j.jhazmat.2005.08.027 -
Lin C, Lin KS. Photocatalytic oxidation of toxic organohalides with
$TiO_2$ /UV: The effects of humic substances and organic mixtures. Chemosphere 2007;66:1872-1877. https://doi.org/10.1016/j.chemosphere.2006.08.027 - Carp O, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004;32:33-177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
- Adewuyi YG. Sonochemistry: environmental science and engineering applications. Indus. & Engin. Chem. Res. 2001;40:4681-4715. https://doi.org/10.1021/ie010096l
- Tachikawa T, Tojo S, Fujitsuka M, Sekino T, Majima T. Photoinduced charge separation in titania nanotubes. J. Phys. Chem. B. 2006;110:14055-14059. https://doi.org/10.1021/jp063800q
-
Pang YL, Abdullah AZ. Comparative study on the process behavior and reaction kinetics in sonocatalytic degradation of organic dyes by powder and nanotubes
$TiO_2$ . Ultrason. Sonochem. 2012;19:642-651. https://doi.org/10.1016/j.ultsonch.2011.09.007 -
Sun L, Li J, Wang CL, Li SF, Chen HB, Lin CJ. An electrochemical strategy of doping
$Fe^{3+}$ into$TiO_2$ nanotube array films for enhancement in photocatalytic activity. Solar Energy Mater. Solar Cells 2009;93:1875-1880. https://doi.org/10.1016/j.solmat.2009.07.001 -
Li X, Zou X, Qu Z, Zhao Q, Wang L. Photocatalytic degradation of gaseous toluene over Ag-doping
$TiO_2$ nanotube powder prepared by anodization coupled with impregnation method. Chemosphere 2011;83:674-679. https://doi.org/10.1016/j.chemosphere.2011.02.043 -
Pang YL, Abdullah AZ. Effect of low
$Fe^{3+}$ doping on characteristics, sonocatalytic activity and reusability of$TiO_2$ nanotubes catalysts for removal of Rhodamine B from water. J. Hazard. Mater. 2012;235:326-335. - Spurr RA, Myers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal. Chem. 1957;29:760-762. https://doi.org/10.1021/ac60125a006
- Gerenser LJ, Photoemission investigation of silver/poly(ethylene terephthalate) interfacial chemistry: The effect of oxygen-plasma treatment. J. Vac. Sci. Technol. A 1990;8:3682-3691. https://doi.org/10.1116/1.576480
-
Epifani M, Giannini C, Tapfer L, Vasanelli L. Sol-gel synthesis and characterization of Ag and Au nanoparticles in
$SiO_2$ ,$TiO_2$ , and$ZrO_2$ thin films. J. Am. Ceram. Soc. 2000;83:2385-2393. -
Ravichandran L, Selvam K, Krishnakumar B, Swaminathan M. Photovalorisation of pentafluorobenzoic acid with platinum doped
$TiO_2$ . J. Hazard. Mater. 2009;167:763-769. https://doi.org/10.1016/j.jhazmat.2009.01.048 -
Stranak V, Quaas M, Bogdanowicz R, et al. Effect of nitrogen doping on
$TiO_xN_y$ thin film formation at reactive high-power pulsed magnetron sputtering. J. Phys. D 2010;43:1-9. - Yoshida R, Suzuki Y, Yoshikawa S. Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes, Mater. Chem. Phys. 2005;91:409-416. https://doi.org/10.1016/j.matchemphys.2004.12.010
-
Kim DS, Han SJ, Kwak SY. Synthesis and photocatalytic activity of mesoporous
$TiO_2$ with the surface area, crystallite size, and pore size. J. Colloid Interface Sci. 2007;316:85-91. https://doi.org/10.1016/j.jcis.2007.07.037 - Zhang GW, He GH, Xue WL, Xu XF, Liu DN, Xu YH. Enhanced photocatalytic performance of titania nanotubes modified with sulfuric acid. J. Mol. Catal. A: Chem. 2012;363-364:423-429. https://doi.org/10.1016/j.molcata.2012.07.020
-
Yuan R, Zhou B, Hua D, Shi C. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped
$TiO_2$ nanotubes under UV-ozonation for drinking water purification. J. Hazard. Mater. 2013;262:527-538. https://doi.org/10.1016/j.jhazmat.2013.09.012 -
Pang YL, Abdullah AZ.
$Fe^{3+}$ doped$TiO_2$ nanotubes for combined adsorption-sonocatalytic degradation of real textile wastewater. Appl. Catal. B: Environ. 2013;129:473-481. https://doi.org/10.1016/j.apcatb.2012.09.051 - Yu J, Xiang Q, Zhou M. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl. Catal. B: Environ. 2009;9:595-602.
- Li AZ, Zhao X, Liu HJ, Qu JH. Characteristic transformation of humic acid during photoelectrocatalysis process and its subsequent disinfection byproduct formation potential. Water Res. 2011;45:6131-6140. https://doi.org/10.1016/j.watres.2011.09.012
-
Zang L, Liu CY, Ren XM. Photochemistry of semiconductor particles: Part 4.-Effects of surface condition on the photodegradation of 2, 4-Dichlorophenol catalysed by
$TiO_2$ suspensions. J. Chem. Soc. Faraday Trans. 1995;91:917-923. https://doi.org/10.1039/ft9959100917
Cited by
- Strain-Induced Enhancement of Eu3+ Emission in Red Phosphor NaMgPO4:Eu3+, Al3+ vol.46, pp.2, 2017, https://doi.org/10.1007/s11664-016-4950-2
- nanotubes vol.33, pp.3, 2018, https://doi.org/10.1177/0885328218797549
- First principles modeling of 3d-metal doped three-layer fluorite-structured TiO2 (4,4) nanotube to be used for photocatalytic hydrogen production vol.146, pp.None, 2015, https://doi.org/10.1016/j.vacuum.2017.05.002
- Enhancing the device efficiency by filling the traps in photoanodes vol.7, pp.46, 2015, https://doi.org/10.1039/c9tc04740a
- Enhanced Visible Light Photocatalytic Activity of N and Ag Doped and Co-Doped TiO2 Synthesized by Using an In-Situ Solvothermal Method for Gas Phase Ammonia Removal vol.10, pp.2, 2015, https://doi.org/10.3390/catal10020251
- Preparation and characterization of Ag-doped TiO2 and its application in catalytic degradation/densification of water pollutants vol.700, pp.1, 2015, https://doi.org/10.1080/15421406.2020.1732554
- Reduction of hazardous reactive oxygen species (ROS) production of ZnO through Mn inclusion for possible UV-radiation shielding application vol.6, pp.6, 2020, https://doi.org/10.1016/j.heliyon.2020.e04186
- Preparation and photocatalytic performance of silver-modified and nitrogen-doped TiO2 nanomaterials with oxygen vacancies vol.45, pp.10, 2015, https://doi.org/10.1039/d0nj04755d
- Impact of Doping and Additive Applications on Photocatalyst Textural Properties in Removing Organic Pollutants: A Review vol.11, pp.10, 2015, https://doi.org/10.3390/catal11101160