참고문헌
- Dautzenberg FM, Mukherjee M. Process intensification using multifunctional reactors. Chem. Eng. Sci. 2001;56:251-267. https://doi.org/10.1016/S0009-2509(00)00228-1
- Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q. Novel Process Windows for Enabling, Accelerating, and Uplifting Flow Chemistry. Chemsuschem. 2013;6:746-789. https://doi.org/10.1002/cssc.201200766
- Boodhoo K, Harvey A. Process Intensification for Green Chemistry. Chem. Listy. 2013;107:665-669.
- Gong J, You F. Sustainable design and synthesis of energy systems. Curr. Opin. Chem. Eng. 2015;10:77-86. https://doi.org/10.1016/j.coche.2015.09.001
- WHO and UNICEF. Progress on Drinking Water and Sanitation [Internet]. WHO and UNICEF; c2014 [cited 2012 Apr. 13]. Available from: http://www.wssinfo.org/fileadmin/user_upload/resources/JMP_report_2014_webEng.pdf.
- Quist-Jensen C, Macedonio F, Drioli E. Membrane crystallization for salts recovery from brine-an experimental and theoretical analysis. Desalin. Water Treat. 2015:1-11.
- Elimelech M, Phillip WA. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011;333:712-717. https://doi.org/10.1126/science.1200488
- Fritzmann C, Lowenberg J, Wintgens T, Melin T. State-of-the-art of reverse osmosis desalination. Desalination 2007;216:1-76. https://doi.org/10.1016/j.desal.2006.12.009
- Global Water Intelligence (GWI/IDA DesalData). Market profile and desalination markets [Internet]. Global Water Intelligence; c2013 [cited 2014 May]. Available from: http://www.desaldata.com/.
- Drioli E, Curcio E, Di Profio G, Macedonio F, Criscuoli A. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination - Energy, exergy and costs analysis. Chem. Eng. Res. Des. 2006;84:209-220. https://doi.org/10.1205/cherd.05171
- Macedonio F, Curcio E, Drioli E. Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination 2007;203:260-276. https://doi.org/10.1016/j.desal.2006.02.021
- Macedonio F, Drioli E, Gusev AA, Bardow A, Semiat R, Kurihara M. Efficient technologies for worldwide clean water supply. Chem. Eng. Process. 2012;51:2-17. https://doi.org/10.1016/j.cep.2011.09.011
- Semiat R. Energy Demands in Desalination Processes. ES&T. 2008;42:8193-8201. https://doi.org/10.1021/es801330u
- Van der Bruggen B, Vandecasteele C. Distillation vs. membrane filtration: overview of process evolutions in seawater desalination. Desalination 2002;143:207-218. https://doi.org/10.1016/S0011-9164(02)00259-X
- Drioli E, Ali A, Macedonio F. Membrane distillation: Recent developments and perspectives. Desalination 2015;356:56-84. https://doi.org/10.1016/j.desal.2014.10.028
- Miller GW. Integrated concepts in water reuse: managing global water needs. Desalination 2006;187:65-75. https://doi.org/10.1016/j.desal.2005.04.068
- Bixio D, Thoeye C, De Koning J, et al. Wastewater reuse in Europe. Desalination 2006;187:89-101. https://doi.org/10.1016/j.desal.2005.04.070
- Cote P, Buisson H, Praderie M. Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Sci. Technol. 1998;38:437-442. https://doi.org/10.1016/S0273-1223(98)00543-5
- Drioli E, Stankiewicz AI, Macedonio F. Membrane engineering in process intensification-An overview. J. Membr. Sci. 2011;380:1-8. https://doi.org/10.1016/j.memsci.2011.06.043
- Redondo JA. Brackish-, sea- and wastewater desalination. Desalination 2001;138:29-40. https://doi.org/10.1016/S0011-9164(01)00241-7
- Tazi-Pain A, Schrotter JC, Bord G, Payreaudeau M, Buisson H. Recent improvement of the BIOSEP (R) process for industrial and municipal wastewater treatment. Desalination 2002;146:439-443. https://doi.org/10.1016/S0011-9164(02)00538-6
- Melin T, Jefferson B, Bixio D, et al. Membrane bioreactor technology for wastewater treatment and reuse. Desalination 2006;187:271-282. https://doi.org/10.1016/j.desal.2005.04.086
- Judd S, Jefferson B. Membranes for industrial wastewater recovery and re-use: Elsevier; 2003.
- Michels B, Adamczyk F, Koch J. Retrofit of a flue gas heat recovery system at the Mehrum Power Plant. An example of power plant lifetime evaluation in practice. In: Proceedings of the POWER-GEN Europe Conference; 2004. p. 10-11.
- Folkedahl BC, Weber GF, Collings ME. Water extraction from coal-fired power plant flue gas: University of North Dakota; 2006.
- Ito A. Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane. J. Membr. Sci. 2000;175:35-42. https://doi.org/10.1016/S0376-7388(00)00404-X
- Sijbesma H, Nymeijer K, van Marwijk R, Heijboer R, Potreck J, Wessling M. Flue gas dehydration using polymer membranes. J. Membr. Sci. 2008;313:263-276. https://doi.org/10.1016/j.memsci.2008.01.024
- Zhang LZ, Zhu DS, Deng XH, Hua B. Thermodynamic modeling of a novel air dehumidification system. Energ. Buildings 2005;37:279-286. https://doi.org/10.1016/j.enbuild.2004.06.019
- Drioli E, Santoro S, Simone S, et al. ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser. React. Funct. Polym. 2014;79:1-7. https://doi.org/10.1016/j.reactfunctpolym.2014.03.003
- Macedonio F, Cersosimo M, Brunetti A, Barbieri G, Drioli E. Water recovery from humidified waste gas streams: Quality control using membrane condenser technology. Chem. Eng. Process 2014;86:196-203. https://doi.org/10.1016/j.cep.2014.08.008
- Brunetti A, Santoro S, Macedonio F, Figoli A, Drioli E, Barbieri G. Waste Gaseous Streams: From Environmental Issue to Source of Water by Using Membrane Condensers. Clean-Soil Air Water 2014;42:1145-1153. https://doi.org/10.1002/clen.201300104
- Macedonio F, Brunetti A, Barbieri G, Drioli E. Membrane Condenser as a New Technology for Water Recovery from Humidified "Waste" Gaseous Streams. Ind. Eng. Chem. Res. 2013;52:1160-1167. https://doi.org/10.1021/ie203031b
- Isetti C, Nannei E, Magrini A. On the application of a membrane air-liquid contactor for air dehumidification. Energ. Buildings 1997;25:185-193. https://doi.org/10.1016/S0378-7788(96)00993-0
- Wadhwani S, Wadhwani AK, Agarwal RB. Clean coal technologies - recent advances. In: First International Conference on Clean Coal Technologies for Our Future; 2002 Oct 21-23;Sardinia, Italy.
- Kothari R, Buddhi D, Sawhney RL. Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sust. Energ. Rev. 2008;12:553-563. https://doi.org/10.1016/j.rser.2006.07.012
- Raggio G, Pettinau A, Orsini A, et al. Coal gasification pilot plant for hydrogen production. Part B: syngas conversion and hydrogen separation, CCT 2005. In: Second International Conference on Clean Coal Technologies for Our Future; 2005 May 10-12; Castiadas, Sardinia, Italy.
- Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy. 2005;78:661-669. https://doi.org/10.1016/j.solener.2004.09.003
- Barbieri G, Brunetti A, Tricoli G, Drioli E. An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen - Experimental analysis of water gas shift. J. Power Sources 2008;182:160-167. https://doi.org/10.1016/j.jpowsour.2008.03.086
- Brunetti A, Barbieri G, Drioli E. Pd-Based Membrane Reactor for Syngas Upgrading. Energy & Fuels. 2009;23:5073-5076. https://doi.org/10.1021/ef900382u
- Brunetti A, Barbieri G, Drioli E. Integrated membrane system for pure hydrogen production: A Pd-Ag membrane reactor and a PEMFC. Fuel Process Technol. 2011;92:166-174. https://doi.org/10.1016/j.fuproc.2010.09.023
- Barbieri G, Brunetti A, Caravella A, Drioli E. Pd-based membrane reactors for one-stage process of water gas shift. Rsc. Adv. 2011;1:651-661. https://doi.org/10.1039/c1ra00375e
- Brunetti A, Drioli E, Barbieri G. Medium/high temperature water gas shift reaction in a Pd-Ag membrane reactor: an experimental investigation. Rsc. Adv. 2012;2:226-233. https://doi.org/10.1039/C1RA00569C
- Abashar MEE, Alhumaizi KI, Adris AM. Investigation of methane-steam reforming in fluidized bed membrane reactors. Chem. Eng. Res. Des. 2003;81:251-258. https://doi.org/10.1205/026387603762878719
- Tsotsis TT, Champagnie AM, Vasileiadis SP, Ziaka ZD, Minet RG. Packed-Bed Catalytic Membrane Reactors. Chem. Eng. Sci. 1992;47:2903-2908. https://doi.org/10.1016/0009-2509(92)87149-K
- Adris AM, Lim CJ, Grace JR. The fluidized-bed membrane reactor for steam methane reforming: Model verification and parametric study. Chem. Eng. Sci. 1997;52:1609-1622. https://doi.org/10.1016/S0009-2509(96)00511-8
- Brunetti A, Barbieri G, Drioli E. Upgrading of a syngas mixture for pure hydrogen production in a Pd-Ag membrane reactor. Chem. Eng. Sci. 2009;64:3448-3454. https://doi.org/10.1016/j.ces.2009.04.028
- Strezov V, Evans TJ. Biomass processing technologies: CRC Press; 2014.
- Drioli E, Brunetti A, Di Profio G, Barbieri G. Process intensification strategies and membrane engineering. Green Chem. 2012;14:1561-1572. https://doi.org/10.1039/c2gc16668b
- Stankiewicz A, Moulijn JA. Process intensification. Ind. Eng. Chem. Res. 2002;41:1920-1924. https://doi.org/10.1021/ie011025p
- Charpentier J. Process intensification, a path to the future. Ingenieria quimica. 2006:16-24.
- Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 2010;359:126-139. https://doi.org/10.1016/j.memsci.2009.10.041
- Esteves A, Mota JPB. Novel Hybrid Membrane/Pressure Swing Adsorption Processes for Gas Separation Applications. In: Membrane Engineering for the treatment of gases; 2011; Cambridge, The United Kingdom: The Royal Society of Chemistry. p. 245-275.
-
Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for
$CO_2$ separation. J. Membr. Sci. 2010;359:115-125. https://doi.org/10.1016/j.memsci.2009.11.040 - Shao L, Low BT, Chung TS, Greenberg AR. Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. J. Membr. Sci. 2009;327:18-31. https://doi.org/10.1016/j.memsci.2008.11.019
- Favre E, Bounaceur R, Roizard D. Biogas, membranes and carbon dioxide capture. J. Membr. Sci. 2009;328:11-14. https://doi.org/10.1016/j.memsci.2008.12.017
- Basu S, Khan AL, Cano-Odena A, Liu CQ, Vankelecom IFJ. Membrane-based technologies for biogas separations. Chem. Soc. Rev. 2010;39:750-768. https://doi.org/10.1039/B817050A
- Lin HQ, Van Wagner E, Raharjo R, Freeman BD, Roman I. High-performance polymer membranes for natural-gas sweetening. Adv. Mater. 2006;18:39-44. https://doi.org/10.1002/adma.200501409
- Scholes CA, Bacus J, Chen GQ, et al. Pilot plant performance of rubbery polymeric membranes for carbon dioxide separation from syngas. J. Membr. Sci. 2012;389:470-477. https://doi.org/10.1016/j.memsci.2011.11.011
-
Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for
$CO_2$ separation. J. Membr. Sci. 2010;359:115-125. https://doi.org/10.1016/j.memsci.2009.11.040 - Ciferno JP, Fout TE, Jones AP, Murphy JT. Capturing Carbon from Existing Coal-Fired Power Plants. Chem. Eng. Prog. 2009;105:33-41.
- Herzog H. What future for carbon capture and sequestration: new technologies could reduce carbon dioxide emissions to the atmosphere while still allowing the use of fossil fuels. Environ. Sci. Technol. 2001;35.
-
White CM, Strazisar BR, Granite EJ, et al. Separation and capture of
$CO_2$ from large stationary sources and sequestration in geological formations-coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc. 2003;53.6:645-715. https://doi.org/10.1080/10473289.2003.10466206 - Favre E. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? J. Membr. Sci. 2007;294:50-59. https://doi.org/10.1016/j.memsci.2007.02.007
- Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 2010;359:126-139. https://doi.org/10.1016/j.memsci.2009.10.041
-
Li BY, Duan YH, Luebke D, Morreale B. Advances in
$CO_2$ capture technology: A patent review. Appl. Energ. 2013;102:1439-1447. https://doi.org/10.1016/j.apenergy.2012.09.009 -
Peters L, Hussain A, Follmann M, Melin T, Hagg MB.
$CO_2$ removal from natural gas by employing amine absorption and membrane technology-A technical and economical analysis. Chem. Eng. J. 2011;172:952-960. https://doi.org/10.1016/j.cej.2011.07.007 - Daal L, Claassen L, Bruns R, et al. Field tests of carbon dioxide removal from flue gasses using polymer membranes. VGB powertech. 2013.
-
Tuinier MJ, Hamers HP, Annaland MV. Techno-economic evaluation of cryogenic
$CO_2$ capture-A comparison with absorption and membrane technology. Int. J. Greenh. Gas. Con. 2011;5:1559-1565. https://doi.org/10.1016/j.ijggc.2011.08.013 -
Powell CE, Qiao GG. Polymeric
$CO_2$ /$N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 2006;279:1-49. https://doi.org/10.1016/j.memsci.2005.12.062 -
Luis P, Van Gerven T, Van der Bruggen B. Recent developments in membrane-based technologies for
$CO_2$ capture. Prog. Energ. Combust. Sci. 2012;38:419-448. https://doi.org/10.1016/j.pecs.2012.01.004 - Ramasubramanian K, Ho WW. Recent developments on membranes for post-combustion carbon capture. Curr. Opin. Chem. Eng. 2011;1:47-54. https://doi.org/10.1016/j.coche.2011.08.002
- Park HB, Jung CH, Lee YM, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 2007;318:254-258. https://doi.org/10.1126/science.1146744
- Jung CH, Lee JE, Han SH, Park HB, Lee YM. Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation. J. Membr. Sci. 2010;350:301-309. https://doi.org/10.1016/j.memsci.2010.01.005
- Calle M, Lee YM. Thermally rearranged (TR) poly (ether- benzoxazole) membranes for gas separation. Macromolecules 2011;44:1156-1165. https://doi.org/10.1021/ma102878z
-
Adams RT, Lee JS, Bae T-H, et al.
$CO_2$ -CH4 permeation in high zeolite 4A loading mixed matrix membranes. J. Membr. Sci. 2011;367:197-203. https://doi.org/10.1016/j.memsci.2010.10.059 - Adams R, Carson C, Ward J, Tannenbaum R, Koros W. Metal organic framework mixed matrix membranes for gas separations. Micropor. Mesopor. Mat. 2010;131:13-20. https://doi.org/10.1016/j.micromeso.2009.11.035
- Robeson, Lloyd M. The upper bound revisited. J. Memb. Sci. 2008;320.1:390-400. https://doi.org/10.1016/j.memsci.2008.04.030
- Low BT, Zhao L, Merkel TC, Weber M, Stolten D. A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. J. Membr. Sci. 2013;431:139-155. https://doi.org/10.1016/j.memsci.2012.12.014
- Association ID. IDA Desalination Yearbook 2011-2012. Water Desalination Report. 2012:62-83.
- Bardi U. Extracting minerals from seawater: an energy analysis. Sustainability 2010;2:980-992. https://doi.org/10.3390/su2040980
- Floor Anthoni. The chemical composition of seawater [Internet]. Floor Anthoni [cited 2015 Feb. 5]. Available from: http://www.seafriends.org.nz/oceano/seawater.htm.
- United States Geological Survey (USGS). Mineral Commodities Summaries 2015 [Internet]. USGS [cited 2015 Feb. 05]. Available from: http://minerals.usgs.gov/minerals/pubs/mcs/.
- Nelson KH, Thompson TG. Deposition of salts from sea water by frigid concentration: DTIC Document; 1954.
- Van der Ham F, Seckler MM, Witkamp GJ. Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer. Chem. Eng. Process. 2004;43:161-167. https://doi.org/10.1016/S0255-2701(03)00018-7
- Drioli E, Di Profio G, Curcio E. Progress in membrane crystallization. Curr. Opin. Chem. Eng. 2012;1:178-182. https://doi.org/10.1016/j.coche.2012.03.005
- Di Profio G, Curcio E, Drioli E. Trypsin crystallization by membrane-based techniques. J. Struct. Biol. 2005;150:41-49. https://doi.org/10.1016/j.jsb.2004.12.006
-
Drioli E, Curcio E, Criscuoli A, Di Profio G. Integrated system for recovery of
$CaCO_3$ , NaCl and$MgSO_4{\cdot}7H_2O$ from nanofiltration retentate. J. Membr. Sci. 2004;239:27-38. https://doi.org/10.1016/j.memsci.2003.09.028 - Curcio E, Criscuoli A, Drioli E. Membrane crystallizers. Ind. Eng. Chem. Res. 2001;40:2679-2684. https://doi.org/10.1021/ie000906d
- Brunetti A, Drioli E, Barbieri G. Energy and mass intensities in hydrogen upgrading by a membrane reactor. Fuel Process. Technol. 2014;118:278-286. https://doi.org/10.1016/j.fuproc.2013.09.009
- Barbieri G, Marigliano G, Perri G, Drioli E. Conversion-temperature diagram for a palladium membrane reactor. Analysis of an endothermic reaction: methane steam reforming. Ind. Eng. Chem. Res. 2001;40:2017-2026. https://doi.org/10.1021/ie0006211
-
Choi S-H, Brunetti A, Drioli E, Barbieri G.
$H_2$ separation from$H_2$ /$N_2$ and$H_2$ /CO mixtures with co-polyimide hollow fiber module. Separ. Sci. Technol. 2010;46:1-13. https://doi.org/10.1080/01496395.2010.487847 - G. Q. Miller, J. Stocker, Proceeding of the 4th European Technical Seminar on Hydrogen Plants. Lisbon (Portugal); 2003. p. 22-25.
- Spillman RW. Economics of gas separation membranes. Chem. Eng. Prog. 1989;85:41-62.
- Brunetti A, Sun Y, Caravella A, Drioli E, Barbieri G. Process Intensification for greenhouse gas separation from biogas: More efficient process schemes based on membrane-integrated systems. Int. J. Greenh. Gas Con. 2015;35:18-29. https://doi.org/10.1016/j.ijggc.2015.01.021
피인용 문헌
- separation pp.21523878, 2019, https://doi.org/10.1002/ghg.1853
- Disposal of titanium-magnesium production industrial effluents vol.2019, pp.1, 2019, https://doi.org/10.17073/0021-3438-2019-1-25-33
- Pilot Tests and Fouling Identification in the Ultrafiltration of Model Oily and Saline Wastewaters vol.26, pp.3, 2019, https://doi.org/10.1515/eces-2019-0037
- Recovery of water and contaminants from cooling tower plume vol.25, pp.2, 2020, https://doi.org/10.4491/eer.2018.192
- Ionic liquid loaded polyether sulfone microspheres for CO2 separation vol.26, pp.5, 2015, https://doi.org/10.1007/s10450-020-00241-4
- Molecularly engineered switchable photo-responsive membrane in gas separation for environmental protection vol.25, pp.4, 2015, https://doi.org/10.4491/eer.2019.090
- Radiation-Induced Asymmetric Grafting of Different Monomers into Base Films to Prepare Novel Bipolar Membranes vol.26, pp.7, 2015, https://doi.org/10.3390/molecules26072028
- Powdered activated carbon (PAC) - vacuum-assisted air gap membrane distillation (V-AGMD) hybrid system to treat wastewater containing surfactants: Effect of operating conditions vol.26, pp.5, 2015, https://doi.org/10.4491/eer.2020.377
- Semiconducting graphitic carbon nitride integrated membranes for sustainable production of clean water: A review vol.282, pp.None, 2015, https://doi.org/10.1016/j.chemosphere.2021.130898
- Development of Pure Silica CHA Membranes for CO2 Separation vol.11, pp.12, 2015, https://doi.org/10.3390/membranes11120926